Z0oBC White Paper

New Strategies in Blockchain

LLLL

by Barton Johnston and Roberto Capodieci, with the help of Stefano Griggio

Release: V1.1 P - 2 April 2020

Z00BC WHITE PAPER V1.1

Abstract

>

Q

g
Sy Ve &0
eZCLITBEe

Since the unfolding of Bitcoin, a plethora of blockchain technologies
has emerged, each approaching certain limitations of the original
design. In the same spirit, in the first of what we intend to be a
sequence of gradual improvements, in this paper we propose a new
blockchain architecture and generally describe its structure. Among
other aspects, we focus on a more evenly distributed block creation,
a fair distribution of the network rewards among the nodes that do
useful work for the network, a reduced blockchain download time that,
no matter how bloated the blockchain is, remains a constant, and to
create a flexible technological base for others to implement on top of
it the business logic specific to their domain. To start we explore the
security and performance implications of each new blockchain, and
where those differ from ZooBC, our blockchain technology.

C

ZooBC 2

Z00BC WHITE PAPER V1.1

Disclaimer

Online Live White Paper

If you are reading this document in a PDF file or a
hardcopy, and want to access the online version to
help with some comments and edits, please use
the QR code, or click here. For the older versions | : . -
of the ZooBC White Paper, please see Appendix 1 Eﬂr";u"

at Page 112.

Latest Release

Download (and print, if you need to), the latest version of this white paper (at
the moment V1.1) in PDF format at this link:

https://bcz.bz/ZooBC-WP

Share this White Paper

)
@

ONE -
E:"

e

[k @

[=]=

NOTE The Proof of existence of this document has been done
only AFTER the document is completed. The Proof
of existence URL of this document can be reached
through this short URL: https://bcz.bz/ZBCWP1-1-PoE

[|

Of=140
[=]
® §
=
[=]h (=]
Tzusin

[=]

r=-

ZooBC 3

https://docs.google.com/document/d/1RHbDHHH0JlAfU8bdgfawbnvlm-Ng_Tq-VA7P-n1p_80
https://bcz.bz/ZBCWP1.1-PoE
http://bcz.bz/zbcwpfb
http://bcz.bz/zbcwptg
http://bcz.bz/zbcwpli
http://bcz.bz/zbcwptw
http://bcz.bz/zbcwprd
https://bcz.bz/ZooBC-WP
https://bcz.bz/ZBCWP1.1-PoE

Z00BC WHITE PAPER V1.1

Privacy Considerations

Before looking at the structure of ZooBC V1, we should address an
important point. Moving into the future of blockchain and decentralized
systems, there is increasing concern over theentirely-public nature of
the data on the blockchain. While privacy in ZooBC is simply handled with
data encryption, other forms of privacy management, such as zero
proof transactions, will be implemented in ZooBC V2, and they stand
out clearly in our minds as important to address in the technology as
awhole. In Appendix 2, we list the thoughts that are guiding us as
we begin designing V2 of the ZooBC blockchain technology.

ZooBC 4

Z00BC WHITE PAPER V1.1

for a normally formatted index,

(O White Paper Index SRR

\\ Abstract Page 2| Q vvw

e o 00 @

/| Disclaimer Page 3 | =]

Why Does Blockchain O/O\O/O
Technology Need Another } } } |:|

Consensus Algorithm? Page 13 I:I

ZooBC: a PoP Decentralized
Application Platform Page 17 >)

Accounts Page 18 C==» |2])

P o N Account Addresses Page 19 |—| Account Properties Page 20
—
© /) Account Types Page 20 |——| Digital Twins Page 21

(Transactions Page22 | @ © ® @

} Transaction Types Page 23 |——| Transaction Propagation Page 24 (-
/
——" Transaction Application Page 24 I—I Multisig Transactions Page 25

Transactions Attachments Page 25 H Escrowed Transactions Page 26 |
| Liquid Transactions Page 29 |——| Transaction Fees Page 30 }——l

O0OO0OO0O0

| e e e e e
| 1
e 1
‘ Blocks Page 31 @ @ @ -------------
} Structure of a Block Page 32 H The Block Seed Page 33 | T

Block Creator Selection Page 35 |—| Cumulative Difficulty Page 35 | ((QD E)

ZooBC 5

Z00BC WHITE PAPER V1.1

((®

White Paper Index I

\ Multisig Page 36 %& ----------------

Multisig Addresses Page 37 I— The Multisig Transaction
Multisig Info Object Page 37 Type Page 38

X\ Multisig Use Cases Page 40 |

\ Off-Chain Multisig Page 40 | On-Chain Multisig Page 41

l Anonymizing Multisig Addresses Page 42 |

/ Concealing Pending Transactions Page 42 |
Hierarchical Multisig Page 43 |

Fee Scaling (Governance) Page 44 ‘
.
‘e

Committing to Fee Votes Page 46 || Revealing Fee Votes Page 47 }—‘

Adjusting the Network Fee Scale Page 48 I

Note on General Governance Page 50 | | % } } }

Node Registration Page 51 C@ >))

/

The Node Registry Life Cycle Page 54 H The Node Registry Page 56 |

/
The Node’s Public Key Page 57 |—| Locked Balance Page 58 |

Proof of Participation Page 62 | {lllO O O O

Overview Page 64 |—| The Receipt Object Page 67 |

Producing Receipts Page 68 |

Collecting Receipts Page 69 |

- 0 > Pruning Old Receipts Page 72 | Batch Table Structure Page 71 |

—/
|-Proving Linked Receipts Page 72 | Receipt Table Structure Page 71 |

| The Height Filter Page 74 | — The Peer Filter Page 75 [— The Data Filter Page 77 |

»r D)

@)

Coinbase Distribution Page 78 (® ® ® @

Coinbase Schedule Page 79 |—| Recipient Selection Page 81 |

B Vi Paper ndes
Spine Blocks Page 82 @@—@

J] Structure of a Spine Block Page 84 |—| Signature Accumulation Page 85 |

A

Joining the Network Page 86 | /|

Snapshots Page 87 0
Creating Snapshots Page 89 | - O O OO

Block Backups Page 90

Archival Nodes Page 93

Om OO0

Constants Page 95

&)

| Tokens Page 95 |—| Coinbase Page 96

OO O0O0

Participation Score Page 96 H Total Number of Nodes Page 97 }—‘

Block Time Page 97 |—| Assigned Peers Page 97 I

Max Transactions per Block Page 98 |—| Receipt Filters Page 98 |

Receipt Batch Size Page 99 |—| State Pruning Page 99 |

Z00oBC Tools Page 101 ‘ Mobile Wallet Page 102 |
Web Wallet Page 103
+ /] Wallet Page 101) allet Page 103 | @
= A
Key Management Page 104 Q @ %@ @

Pr D)

\ Attack Vectors Page 100
o 0 00

ZooBC 7

Z00BC WHITE PAPER V1.1

White Paper Index I

Q=== 99O E

Conclusmn Page 106 | =
@ —
@ — y

\ Learn more about ZooBC Page 109 | O/O\O/O

I:I I:I O \\ |:|
N\ Support ZooBC Page 110 | 9
) Forum, Q/A, and Feedbacks Page 110
g4
Bounties and rewards Page 111
2\ APPENDIX 1
White Paper Older Versions Page 112
APPENDIX 2
Privacy Considerations Page 114
APPENDIX 3
Glossary Page 116
APPENDIX 4 | H
Consensus Algorithms Page 129
APPENDIX 5
Websites, Groups and Social Media Page 144
APPENDIX 6 >Pr D)) —
White Paper Index Page 147 —

) @

Z00BC WHITE PAPER V1.1

Introduction

As blockchains have grown from Bitcoin into a multitude of diverse
technologies, a few key problems have remained largely unsolved.
Many technologies take many approaches to ameliorate some of
the issues, but some remain unaddressed, and many others remain
unsatisfactorily solved. In the first version of our proposed technology, we
do not aim to address all of them, but address some, and lay a foundation
to address others. A few such issues are these:

Consensus algorithms are still evolving rapidly. Broadly, consensus
algorithms of existing blockchains fall into three categories: scarcity of
external resources (proof of work, scarcity of internal resources (such
as proof of stake), and federated consensus models. The first two derive
their security from who has the most money, which is a weak security
model for a blockchain where the objects of interest are non-financial;
and most federated models make security compromises around how
members are elected to or ejected from the federation.

R e

‘&0@@:%
TEeNeB e

Blockchains typically do not reward the nodes which do meaningful
work for the network. Most chains reward only those nodes which
create the blocks, but do not have a method to measure which nodes are
gossiping messages and thereby keeping the network decentralized. This
Is largely because it is not easy to achieve consensus on the behavior of
so many nodes in a trustless decentralized way, however the obvious
problem remains: a perfectly efficient actor will learn to create blocks
but not gossip transactions.

ZooBC 9

Z00BC WHITE PAPER V1.1 Introduction M

Blockchains download slowly, and the length of the download depends
on the age and activity level of the chain. In many cases such as Bitcoin
or Ethereum, the chain becomes so large that it is a large investment or
undertaking to even join the network and operate a node. The difficulty for
a new node to join the network makes it difficult for networks to grow large
enough to have the true robustness of decentralization.

Decentralized applications running on blockchains are currently
restricted to either being strongly-coupled, such as smart contracts
which may only be coded in the blockchain’s language in a limited
environment, or weakly-coupled, such as external pseudo-centralized
applications which read and write important data to the blockchain
as a storage layer. There is a lot of room between these extremes to
be explored, to allow the creation of decentralized applications which
leverage the decentralized network of the blockchain and its security
properties, while not being bound entirely into a sandbox where each
instance merely replicates the results of the others.

The ZooBC Project as a whole aims to analyze, experiment, and
ultimately develop solutions to these and other problems facing the
ecosystem of blockchain technologies.

ZooBC 10

Z00BC WHITE PAPER V1.1

Project Goals

20/

T

Our long-term vision with the ZooBC project is to develop a public,
scalable, decentralized application platform and also to create a core
blockchain technology that can be easily adapted to other business use
cases for private deployments. With ZooBC V2.0, which will be the subject
of a later whitepaper, Blockchain Zoo is developing an approach towards
decentralized applications ("DApps”) which is radically different from the
conventional “smart contracts” approach used by Ethereum and other
blockchain technologies. However, before working towards this goal, we
have elected to start with ZooBC V1.0, a more conservative technology that
lays the foundation for future work.

This first version is similar to other existing blockchain technologies but
with a few extra key core mechanics which will be leveraged more
thoroughly as ZooBC progresses into future versions. These core
functions bring some unique value to the first version of ZooBC but, will
deliver vastly more as new functionalities, such as the DApp platform, geo
scalability, and infra-chain transactions, are implemented (more on this
in the V2 of the white paper)

The first major diversion from previous blockchain technologies is a
new consensus algorithm called Proof of Participation that has been
architected, engineered, and implemented by Blockchain Zoo. In the
context of the DApp platform that will be implemented in ZooBC V2.0, the
Proof of Participation algorithm gives ZooBC a large consensus-tracked
set of participating nodes with incentives to remain online, which can
later be organized into sub-federations that may perform more efficient
consensus algorithms for DApps. In the following pages we develop the
motivation for pursuing a new kind of algorithm, and how its design
logically follows from the development of previous popular consensus
algorithms.

ZooBC 11

Z00BC WHITE PAPER V1.1 Project Goals |

The second major diversion from previous blockchains is the use of a
lightweight cryptographic shortcut made of special blocks created once
per day, and called “spine block”. This secures the state of the ZooBC
blockchain at certain checkpoints and allows new nodes to identify and
download the latest state of the network, cryptographically secured,
without having to download and apply all the previous blocks and
transactions. In the context of a DApp platform, this checkpointing
system can be used to secure the state of many apps, or even many
blockchains, in one single place. For this first version of ZooBC, its
utility is limited to enable new nodes to safely and quickly join the
network at the current state.

The third major diversion from previous blockchains allows a user
to choose which digital signature algorithm will secure his
account, and to configure an account so that it requires approval
to receive transactions. These changes are targeted at increasing the
blockchain’'s compatibility with various government regulations,
for example using digital signatures recognized in court to validate
blockchain transactions and proving a user agreed to receive certain
funds or assets before they are attributed to his ownership.

This paper will discuss in more detail the first release of the ZooBC
technology (ZooBC V1.0 and enanchements toward the V2.0). For a
better understanding of the blockchain terminology used in this paper,
please refer to the blockchain glossary in Appendix 3 at Page 116.

ZooBC 12

Z00BC WHITE PAPER V1.1

Why Does Blockchain Technology Need
Another Consensus Algorithm?

To understand why we have opted to implement novel mechanics
to secure our blockchain, this section offers an overview of various
existing consensus algorithms. This is for those readers wanting a
more detailed account of the history of consensus algorithms and the
reasons why we thought it necessary to develop beyond existing work.
For those wanting to go straight to ZooBC's specifications and technical
details, only the “Proof of Participation” paragraph is relevant.

The blockchain space is saturated with attempts to improve efficiency,
security and fairness in the way that nodes reach a consensus on
the history of events witnessed by the network. While the explosion
of strategies may seem overwhelming or unnecessary, each project
(some more than others) is doing its part in exploring the properties
and tradeoffs yielded by each approach, and the crypto community
Is collectively narrowing down the proposed consensus strategies
darwinistically until only the strongest are left standing.

Here a brief overview of the major approaches to blockchain consensus,
and our reasoning to claim Blockchain Zoo's Proof of Participation as an
improvement over its predecessors. For a more detailed overview and
visualization, please see Appendix 4 at Page 129.

ZooBC 13

Z00BC WHITE PAPER V1.1

Proof of Work Consensus

The Bitcoin white paper introduced the
concept of using accumulated “Proof of
Work™ as a method for any node to agree
on which blockchain, among forks, should
be trusted. This approach was very powerful
because it allowed nodes to independently and objectively agree on one
proposed history of events among many alternatives, in a way that
resists a “Sybil attack” (because votes are counted by CPU cycles,
not by accounts.) While many insist that Proof of Work is still the safest
way to secure a blockchain, time has shown some undesirable
properties of the algorithm such as the increasing energy usage, the
centralization of the mining power, and potential for externalized control.
Find out more about PoW in Appendix 4 at Page 129.

Proof of Stake Consensus

These concernsmotivated some to develop
an alternate consensus algorithm to
objectively choose between proposed
versions of the blockchain history called
“Proof of Stake”. In this approach, the likelihood of a network participant
to add a block to the history is computed according to how many tokens
on the network she possesses, and the block she creates is proven
to originate from her via a digital signature. In this way, which chain
required “more work” to create is simulated by a calculation of which
nodes added blocks at which times and their relative stakes. This
design requires minimal energy and guarantees that, in a fork, the
nodes will choose the blockchain created by the majority of highly-
invested network participants -- in other words, those who have a
larger stake of tokens locked to create new blocks. However, this
strategy still has some undesirable properties such as a majority of
the tokens being in the hands of only a few participants, the possible
creation of the alternate blockchain history controlled by only a small
number of private keys. Find out more about PoS in Appendix 4 at
Page 129.

ZooBC 14

Z00BC WHITE PAPER V1.1

Federated Consensus

These consensus algorithms have been
well-studied long before the emergence of
blockchain technology for ‘use in other

distributed systems. While we feel such
strategies effectively address the concerns above, in other ways they

are a step backward from Proof of Work and Proof of Stake. Federated
networks are no longer “permissionless”, and the set of federated
entities is usually well known so we feel a pure federation is not acceptable
for secure decentralized consensus. Find out more about the Federated
Consensus in Appendix 4 at Page 129.

Delegated Proof of Stake Consensus

ne of the most popular modern

approaches to improving the scale of a
\ .- blockchain network is to use “Delegated
VA Proof of Stake” Consensus, where the

m m m W accounts of the blockchain vote, with,
their stake, a small number of nodes running large enough hardware,
to become block creators and thus support a high transaction volume
blockchain. While this approach can dramatically increase the
throughput of the network, it does so at the expense of decentralization,
having similar flaws as conventional Proof of Stake and small
Federations. As described above, specifically, the ease of quickly
collecting enough stake to control the network, and the ability of a

small number of block creators to conspire to censor transactions. Find
out more about the DPoS in Appendix 4 at Page 129.

(@]

Byzantine Fault Tolerant Consensus

Another popular strategy for increasing the
transaction throughput of a decentralized
network is an algorithm called “Practical

Byzantine Fault Tolerance”. Thisalgorithm
Is especially used in Federated consensus, where the participants are

pre-selected, because it carries a particular weakness in the face of Sybil
attacks (when one attacker can operate many nodes on the network) which
would make it unsuitable for some pBFT networks. Find out more about
the pBFT in Appendix 4 at Page 129.

ZooBC 15

Z00BC WHITE PAPER V1.1

Proof of Participation Consensus

Based on consideration of the various
flaws and tradeoffs in the consensus
mechanisms explored above, ZooBC
adopts a few elements of Proof of Stake
and of Federated consensus strategies,
combined with a novel algorithm developed
by Blockchain Zoo to prove that a node is
performing useful work for the network. We

call this “Proof of Participation” consensus.
Z00BC maintains a federation of nodes that we call the "Node

Registry”. Only nodes within the registry are permitted to create
blocks, and their probability to create the next block is more or less
equal. This is similar to Federated Consensus. However, any node
operator can apply for a spot in this registry, and their admittance into the
registry is governed entirely by the protocol rules, not by any centralized
entity. The rate at which new nodes are added to the registry is strictly
limited by the protocol, and the selection of which applicants will be
added is governed by protocol rules that can be set based on the use
case of ZooBC deployment. For example it can be based on participation
efforts, score gained by nodes based on a specific rule, or by mere
random selection. For ZooBC public open blockchain, to give value to
the core token, we have decided to govern the selection of what nodes
can stay in the registry, by how much stake they are willing to lock
while they are in the registry. As nodes queue to enter the node registry,
priority is given to nodes with a higher locked stake. This method uses
a concept of Proof of Stake, to the extent that staking tokens (a scarce
resource on the network] is used as a Sybil prevention mechanism,
essential for a new blockchain. Find out more about the PoP in Appendix
4 at Page 129.

With this explanation of why a new consensus mechanism is
needed, the white paper continues, in the next section, with a
general description of the technology used in ZooBC.

ZooBC 16

ZooBC

17

Z00BC WHITE PAPER V1.1

Z00BC: a PoP Decentralized
Application Platform

i |

®® @é

) J (L=

This section of the paper presents a reasonably complete explanation
of the system in technical detail. A future discussion of security
considerations and attack vectors assumes the reader’s familiarity
with the following mechanisms, which enables us to reason about
how they combine to form the security properties of the system as
a whole. This will be further developed in future versions of the white

paper

o]
!%E"ﬁ Interested in contributing to the code? Request access
Eﬁ% to GitHub repository here

> | VIDEO
[w] Watch ZooBC [m]E=m Watch ZooBC
ALPHA explainer
=] 13 videos = videos

@ FORUM

Eﬁm Join discusions
i about ZooBC

| zooBc azaA

[®]-F:] Getyour answers
s on ZooBC
[m] a4 questions

https://zoobc.org/index.php?topic=96.0
https://www.youtube.com/playlist?list=PL3G4Efanq2U3RK_9Zbu8DO9RQyhHKLeeN
https://zoobc.org/index.php?topic=96.0
https://www.youtube.com/playlist?list=PL3G4Efanq2U1OL4vDmv9aIwv24PJc5WPI
https://zoobc.org/
https://zoobc.how/

Z00BC WHITE PAPER V1.1

Accounts

The very first blockchain (Bitcoin) uses an “unspent transaction output
model” of a node’s current state. In this model, there is a large pool of
“transaction outputs” which can be “spent” by anyone possessing the
private keys corresponding to the addresses identified as the receivers
of the transaction. With this model, to compute the balance of an
account, a node needs to apply in sequence the first transaction through
the last. While this model confers certain advantages, it is limited to
modeling the ownership of titles or assets.

e)

B Bitcoin EN- @) Z0oBC Wallet N @
e
Dashboard 1ZBC=10USD ¥
[Q Tx1 Send » 30 BTC] Account 1
@ Tx2 Receive » 15BTC 18.022 ZBC
180,22 USD
[Q Tx3 Send » 20 BTC] - IdSEND I .‘,’.REQUESTI u
@ Tx4 Receive » 45BTC \ /
Recent transactions
[Q Tx5 Send » 5BTC] (A
Transaction 1
INVESTMENTS
T WRIBaekGZKAYVHFEI N ZahSTFE20 i wr
Transaction 2
SHOPPING
................................ wr
ecee

. O

Il Bitcoin Model I ZooBC Model

Subsequent technologies such as Ethereum adopted a more general
“account model”, where the state of the database is composed of
“accounts” and their properties at any given point in time. For the
same reason, in ZooBC we also use an account model to store the
state of balances and other properties belonging to users in the system.
With this model, the balance of an account and other properties can
simply be queried from the database.

ZOOBC Q&A

[m]j:[m] Ask questions
about Accounts
[=]

ZooBC 18

https://zoobc.how/?qa=search&q=account

Z00BC WHITE PAPER V1.1

Account Addresses

Account 1~
bc1garOsrrr7xfkvy5l643lydnw9re59gtzzwfbomdq

Most blockchain software picks a specific digital signature algorithm
and requires all users to create key pairs using that algorithm. For our
protocol we take into consideration two key factors: that some signature
algorithms are increasingly respected in some countries by courts of law
(government-issued digital signatures and elD cards), as well as the
convenience of sending funds to an account for which you are already
certain the other party possesses the private key, although on another
blockchain.

Therefore we design our protocol so that a user can select his own
signature algorithm from a set of supported address types. Each type
specifies a unique address type code, as well as the format of the address,
and the format of the corresponding digital signature. In this way it is
possible, for example, to send funds to your friend’s Bitcoin address
on the ZooBC blockchain, knowing that your friend will then be able
to use his Bitcoin private keys to sign valid spends of those funds on
our blockchain. To be clear, this allows the use of a Bitcoin address
in ZooBC blockchain, but doesn’'t mean that funds are transferred
between the two blockchains. This will be possible with a dedicated
DApp in the future versions of ZooBC.

> | VIDEO

[m]£F.[m] What address types
: does ZooBC support?

O

ZooBC 19

https://youtu.be/-29dC73vmG8

Z00BC WHITE PAPER V1.1

Account Properties

Each account can have a set of properties assigned to it by itself or other
accounts. In some cases the names and values of these properties may
be arbitrary, while in other cases (especially in customized versions of the
blockchain] certain property names may be given particular rules for how
they are set and how they affect the consensus logic.

=h| Forum

[m]ZE[E] Join discussions about
h' - Account Properties
O

Account Types

While the most common type of account is for users, there may be other
account types which share some characteristics of accounts (such as
having a blockchain address, being able to have properties assigned to
it, etc), but which have other characteristics which may be customized
in the consensus rules.

One such account type is an asset account, which represents a single
non-fungible asset which grants one party the right to modify its
properties, and allows its ownership to be transferred from account
to account. It could be used, for example, for warehouse receipts, land
ownership titles, etc.

ZooBC 20

https://zoobc.org/index.php?board=44.0

Z00BC WHITE PAPER V1.1

Digital Twins

[1

JLI 2 ¢r DD o =L DD

ZoBC Color : Silver .
Type :Coreiy —

|\ >)

The Digital Twins core principle is, for a physical entity or an asset, a
digital equivalent exists in the blockchain. To replicate a physical entity
- be it a machine, infrastructure or a living being - data is extremely
important. The nature of data, consisting of physical attributes, inter
- object interactions and future states, will be seamlessly exchanged
between the digital and the physical worlds using blockchain. ZooBC
allows users to create special account types to represent assets and
be the digital part of the twins

ZooBC 21

Z00BC WHITE PAPER V1.1

Transactions

Every action executed on the ZooBC blockchain by a user is encoded in
a transaction that specifies the action the nodes should take, the action

parameters, a data payload, and have all this digitally signed using the
sender’s private key.

(* e— O \ * e— O

) Z0oBC Wallet wne @) Z0oBC Wallet N @

—_— —_—
Dashboard 128C=10USD v Dashboard 1Z8C=10USD W

Account 1

2,35ZBC

Account 1

2,35ZBC

@ 1 4 RECEIVE 1
e—

Recent transactions
T
nnnnnnnnnnn
INVESTMENTS
DR SRR 24T e
Trans:

A transaction may be as simple as transferring tokens from one
account to another, but could have unlimited complexity, so long as its
core application logic satisfies the properties that both the transaction
validation and its execution are purely deterministic operations which
only read from, and write to, the portion of each node’s database
managed by the consensus algorithm.

=0 | Forum

Join the discussion
about Transactions

Z0OBC Q&A

mgkm Ask questions about
i 2 Transactions
=] et

ZooBC 22

https://zoobc.org/index.php?board=60.0
https://zoobc.how/?qa=tag/transaction

Z00BC WHITE PAPER V1.1

Transaction Types

We do not support, nor plan to support, general “smart contracts”
[on-chain code), despite the popularity of this approach, because we
find it unsuitable for serious decentralized business logic. Code that
cannot be updated in case of bugs or changing business rules (even
if by a democratic process of distributing a node software update] is
a liability. Further, implementing a VM (Virtual Machine - an isolated
virtual computer inside a computer] that supports arbitrary
logic, increases both the blockchain code complexity, and the user
complexity in terms of computing transaction execution costs and
interface design.

While in future releases of ZooBC it will be possible to deploy
decentralized applications, the first version will allow integration with
centralized services on the base transaction, and is deployed with a
set of transaction types recognized by the network, where each type
defines a particular behavior. While the initial set of transaction types
we include is limited, our reference implementation is structured in
such a way that an organization producing a customized version of this
blockchain can easily add or modify the transaction logic to their node
software and corresponding wallet software.

=1 Forum

[mEE:[E] Join the discussion about
Transaction Types
[=]52%

ZooBC 23

https://zoobc.org/index.php?board=38.0

Z00BC WHITE PAPER V1.1

Transaction Propagation

When a transaction is first received from a peer or from a wallet
software, the node will first confirm that the transaction is legal.
This includes validating that the transaction is closed by a valid digital
signature for its sending account address and that the parameters of
the transaction are valid according to the transaction type’s rules
and the current state of the database (such as having enough balance
to send funds).

If the transaction received is valid, the node will propagate the transaction
by transmitting it to other connected peers, as well as store the
transaction in its local mempool. In this way, valid transactions are
echoed across the peer-to-peer network until they are retained in
the mempool of the majority of nodes.

Upon receiving a valid transaction, each node will also return a special
object we call a receipt to the sender. Receipts are used in the Proof of
Participation algorithm described below.

Transaction Application

When a node receives and validates a new block (described in the section on
“blocks” below], it will contain an ordered list of zero or more transactions,
which the node will then apply in sequence.

For a node, applying a transaction means executing the rules associated
with the transaction’s type to update its local database from an old
state to a new state. In the simplest example, this can mean deducting
the balance from one account and adding it to another.

ZooBC 24

Z00BC WHITE PAPER V1.1

Multisig Transactions

Multisig accounts are accounts that require multiple signatures
to post valid transactions. This is needed when at least X out of Y
people need to agree for a transaction to be executed. ZooBC supports
a special type of multisig account, which may specify a set of cosigners
who may approve transactions from that account. An action by a
multisig account is managed by the cosigners by submitting a
sequence of transactions which adds to the necessary amount of
signatures until enough signatures are reached for the action to be
executed. The mechanics of multisig accounts and multisig transactions
are described in more detail below in the Multisig section.

O OMULTISIGNATURE

oO—I®H » #

7 7

NAME O_ O O

Transactions Attachments

In future versions of ZooBC, transactions will be allowed to specify large
attachments to be stored in a distributed file system by the network.
While the transaction itself must be propagated to all nodes, the
attachment may only need to be propagated to a few nodes responsible
for storing the file for others to download. More details on this are given
in the section below on File Distribution.

ZooBC 25

Z00BC WHITE PAPER V1.1

Escrowed Transactions

When two parties must swap goods online, it is often useful to have
a trusted third party keep the goods in escrow, such that the swap
is only executed when both parties have committed their assets.
Traditionally, this trusted third party holds both of the assets, and
if they are not in fact so trustworthy, they may abscond with both.
Therefore it is useful to have a system in which the trusted third
party may only approve or reject the transfers between parties, but
In no case becomes the owner of the assets.

To facilitate this use case, Z0oBC users may optionally include in the
transaction the account address of an approver, which may either accept
or reject the application of the transaction. Transactions which require
approval are kept in an “escrowed” state by the blockchain, such that
the funds or other assets they confer ownership of cannot be used by
either the sender or the receiver until the explicit approval or rejection is
completed, or the timeout returns control of the assets to the sender.

The transaction may also specify:

@ a custom timeout: the number of blocks until,
or the DateTime at which, the transaction is
automatically rejected (by default 1 day). The
maximum timeout is 1 month

a commission: an amount of tokens which
will be paid to the approver if he accepts /
rejects the transaction before the timeout,
by default, the cost of a transaction

@ instructions for the approver: in binary or a
JSON format if the approver is an application
on a server, or in a human language if the
approver is a regular user of ZooBC

@ the behavior for when the transaction times
out: automatically approve or reject

ZooBC 26

B Escrowed Transactions ZOOBC WHITE PAPER V1.1

In the case that the timeout is reached before the approver sends
an approval or rejection, the transaction is automatically approved
or rejected and the commission is returned to the sender.

In order to approve or reject an escrowed transaction, the specified
approver must broadcast an approval transaction, referencing the
hash of the pending escrowed transaction, and specifying whether he
approves or rejects it. While the approval transaction can be submitted
automatically by centralized services, when a user needs to manually
submit the approval for a transaction, the technical complexities are
hidden by the wallet Ul.

=

] ®

ZBC

J

One use case of such escrow mechanism would be to configure a
centralized server which manages an approver account, and which is
programmed to automatically approve transactions only when certain
conditions have been met. For example, an escrowed transaction may
specify that it should only be approved once 10 Ethereum have been
transferred to a particular ETH account, and set the approver to be a
server which will monitor the Ethereum network to determine whether
to release the funds.

ZooBC 27

ZOOBCIWHITERE Escrowed Transactions

Alternatively, any account may be configured to require explicit
approval to acceptany transaction addressed to it. In this case, if an
approver account is not specified, the recipient account automatically
becomes the approver. The rest of the mechanics defined above apply
in exactly the same way, with the receiver of the transaction functioning
as the approver.

To achieve the current normal behavior of blockchain transactions,
any transaction which does not specify an approver account, and for
which the receiver is not configured to require approval to accept
transactions, is applied immediately upon its acceptance in a block.

The owner of an account may at any time enable or disable this
mandatory approval behavior on the account by broadcasting the
desired account property setting with a required approval transaction
and specifying whether mandatory approval is enabled (default is
“no”).

ZooBC 28

Z00BC WHITE PAPER V1.1

Liquid Transactions

In some cases, it may be useful to represent a continuing stream of
regular payments from one account to another for the duration that a
service is being used. Conventional transactions are a poor fit for this
purpose because they must be explicitly created and signed by a user’s
wallet each time. Therefore, ZooBC implements liquid transactions.

A liquid transaction specifies an amount of funds to be paid and the
duration over which those funds should be paid. During this time, the
funds will slowly and continuously move from the sender’s account
to the receiver’s account. The sender may cancel the ongoing liquid
transaction at any time, only having paid the amount that the seller
has already received. And the receiver may access the funds as soon
as they are received in his account by the passage of enough time.

External applications may easily reference an ongoing liquid transaction
to decide whether to grant a user in their system (corresponding to
the sender’s ZooBC account) access to features or services on their
platform. This feature could also be used for payment of salaries or
allowances on a continuous basis.

ZooBC 29

Z00BC WHITE PAPER V1.1

Transaction Fees

Each transaction must include a fee in tokens to pay for its execution
on the network. The fee for each transaction, together with new to-
kens generated at each new block, are distributed among the nodes
in the “node registry”. Requiring a fee for each transaction serves as
a form of spam protection, ensuring it is costly to overwhelm the net-
work’s limited transaction volume. It also serves to incentivize block
creators to include as many transactions as possible, maximizing the
collective reward for producing blocks.

The minimum fee for a transaction is computed differently for each
transaction type, then multiplied by a fee scaling constant which can
be periodically adjusted. A user posting a transaction may pay more
than the required minimum fee in order to be accepted in a block faster
when the network load is high, but a transaction with a fee lower
than the computed minimum will be rejected. For transaction A,
this minimum fee can be computed:

min_fee(Tx,) = type_fee(TxType,, Tx,) * fee_scale

ZOOBC Q&A

[@]*k:[m] Ask questions about
i Transaction Fees
Ol]

ZooBC 30

https://zoobc.how/?qa=search&q=fee

ZooBC 31

Z00BC WHITE PAPER V1.1

Blocks

Unlike a centralized system that receives requests from the clients in
a uniquely ordered fashion (serialized), in a decentralized system such
as a Peer to Peer network (where users can use any node as an entry

point to post data to the network]) each node may receive transactions
in a different order.

WHAT IS A BLOCK? | 722 SN
|

A block is a collection of transactions |

that have happened during a certain |

amount oftime and that is added to the
| blockchain. !

Index :0

Timestamp :17:49 1/10/2019
PreviousHash :0000

Hash :Dx2d05...

Data :BlockOdata

A block may include valid blockchain
transactions that have not entered any
prior blocks. All blocks are put into a
linear sequence called the blockchain.
A new block includes the hash of the
previous block.

——@BLOCK SIZE @®BLOCK HEIGHT

| Index :2 | Index :1
Timestamp :18:00 1/10/2019 | Timestamp :17:55 1/10/2019
- PreviousHash :Dxb4d3.... - PreviousHash :Dx2d05...
Hash :Dx997g... Hash :Dxb4d3...
Data :Block2data Data :Block1data

Shows the file size of each block on a
blockchain and therefore, how many
transactions can be bundled and
processed in each block. For Bitcoin,
the current block size is IMB.

@BLOCK EXPLORER
@ [A website with all transactions happening on the blockchain.

A blockchain system fundamentally solves the problem of uniquely
ordering all transactions which have been broadcast to the network.
Nodes are chosen in a pseudo-random lottery to append sets of transactions
to the network’s total transaction history. We call such a set of transactions,
along with some meta-information, a block. As indicated by the name
“blockchain”, blocks are cryptographically chained together by including
in the metadata of each block the hash of the previous block. Consequently,

to modify the contents of any previous block would require all subsequent
blocks to be re-created.

The total number of blocks on a given
blockchain. It starts with the first
block, known as the Genesis Block
(height 0] and counts up from there.

> | VIDEO

[m]i=[m] Why does ZooBC blockchain
s network need two types of
14 blocks?

https://youtu.be/QzudJEjvmYM

Z00BC WHITE PAPER V1.1

=h| ForuM

[msa[E] Join the discussion
i about Block Backups

(=]

Z0OBC Q&A

[E:%4[E] Ask questions
,j about Blocks

[+

Structure of a Block

Each block contains several key pieces of information, which become
effectively immutable as more blocks are later chained on top of it. The
block contains the timestamp at which it was created, the ID number
of the node which created it in the registry, a hash of all transactions
included in the block, a hash of all receipts included in the block
(described in the Proof of Participation section), the hash of the previous
block, a special parameter used for synchronized random number
generation we call the "block seed”, and a few other properties.

| 48735c4fae42d150116497 |
! 6afec76730b9e5fe467f680 L -
 bdd8daff4bb77674045

1 48735c4fae42d150116497 | eeee i 23yh15fs4t4270-4829...
Gafec76730b965fe467f680: fffffff e
| bdd8daff4bb77674045

ZooBC 32

https://zoobc.how/?qa=tag/blocks
https://zoobc.org/index.php?board=53.0

B Structure of a Block Z00BC WHITE PAPER V1.1

When a node receives a new block over the network, a series of
validations will be performed over the block data itself, any transactions
referenced by the block, and any receipts included in the block, such
as ensuring that the previous block hash matches the actual last
block hash the node has seen, that adequate time has passed since
the timestamp of the previous block for the new block creator’s
position in the priority list of next creators, that the block seed is
the legal value for the block creator, that the receipts included are
legal according to the receipt filtering rules, and others. Only after
the block passes this set of validations will it be “chained” to the last
block in each node database, and the transactions included in the
block will be executed in the order they are listed. The execution of
the transactions will thus change each single node’s database state.

The Block Seed

/Z00BC Proof of Participation consensus mechanism uses many
strategies that depend on pseudo-random numbers which can also
be agreed upon deterministically by the network (such that each node
computes the same results of its operations without explicitly sharing
these results to other nodes).

Because a strong hash function produces a uniformly distributed
random number from arbitrary input data, the hash of a block may
be erroneously used as a source of entropy. However, as a block creator
only needs to rearrange the transactions in his block, or exclude some,
or change the timestamp etc, to produce a completely new block hash,
he may make many attempts to generate a hash which would be more
profitable, and thus manipulate the blockchain, potentially opening
the blockchain to attacks. Therefore ZooBC includes a special property
in each block called the block seed. This property cannot be influenced
by the block creator, and cannot be predicted in advance by anyone
who does not have the private keys of the other block creators. The
block seed is computed by the following formula:

block_seed: = creator_signatureH(hash(block_seed: -1))

ZooBC 33

Z00BC WHITE PAPER V1.1 The Block Seed R

In other words, the block seed is a digital signature by the block
creator on the hash of the previous block seed. By using the Ed25519
digital signature algorithm, we guarantee that the signature of a
message by some particular private key has precisely one resulting
signature, removing any freedom on the part of the block creator as
to which block seed he is required by the protocol to include in his
block.

With this method, the only way a node can influence the block seed for
the next block is to skip his turn (more on this in the next section]
to create a block. The Proof of Participation algorithm pseudo -
randomly assigns each node in the node registry a turn to create the
next block, and by skipping his assigned turn, the block creator will
lose participation score [if he does so repeatedly he will be ejected
from the node registry.]

A lower participation score immediately affects the likelihood of a node
to receive coinbase rewards and dividends of transaction fees. Therefore,
exercising this one degree of freedom in influencing the block seed
comes at a great cost, incentivizing even maliciously inclined nodes
to submit a block seed on time which may be unfavorable to them.

[D | vibeo

[Eg#mE] Why Did You Choose the
Ed25519 Digital Signature

= Type?

[m]®#4[E] Joindiscussions
about Block Seed

ZooBC 34

https://youtu.be/-29dC73vmG8?t=123
https://zoobc.org/index.php?board=39.0

Z00BC WHITE PAPER V1.1

Block Creator Selection

Because with the “node registry” we know the complete set of potential
block creators (how a node is added to the registry is described below
in the section on “node registration”), after each block, ZooBC pseudo
-randomly generates a priority-ordered list of the nodes responsible
for creating the next block. When a node misses its turn to create a
block in this list (either because it is offline, not well connected, or
deliberately skips its turn] its participation score is reduced, and the
network awaits a block from the next node in the randomly ordered
list.

ordern = hash(hash(BS:) + PKx)

Cumulative Difficulty

In Proof of Participation consensus, the equivalent of “highest difficulty
chain” in Proof of Work consensus is the chain whose blocks have been
created most reliably by one of the highest priority nodes in the list of next
potential block creators, which can be called the chain with the highest
cumulative difficulty.

To avoid attacks done by node administrators purposely leaving their
nodes offline, to later rebuild a blockchain with a higher cumulative
difficulty, the block creation can be done only by the first X (exact
number TBDJ nodes in the randomized priority list. If they are all
unable to generate a block, any successive node can only produce an
empty block. All the nodes before the one generating the empty block
will lose participation score. If more than one block of the same height
Is proposed in the network, the nodes will choose the one generated
by a node with a higher place in the randomized list. If two blocks are
proposed from the same creator, the one with the earlier timestamp
Is selected. When a node is forced to evaluate two competing chains, it
will always select the chain with the highest cumulative difficulty.

ZooBC 35

Z00BC WHITE PAPER V1.1

Multisig

: L SOMETHING NOTHING
b o HAPPENS

|x_x| GROUP 1

|1_x| GROUP 2

When managing high-value digital assets, it is risky to have a single
person holding the account key as the key of the account can get lost
or compromised exposing the secured asset. Therefore we implement
native multi-signature ("multisig”] features, allowing users to create
accounts that require X-of-Y signatures to perform transactions. For
example, out of 10 people each holding a different key, a transaction can
be performed by just 4 of those 10 signing it.

> | VIDEO

[m]=:[m] Explaining Multisig

% Mechanism
[=1:

Z=| Forum

Join discussions
about Multisig

-
.
-

| ZOOBC Q&A

[k@ Cetyour questions about
2 Multisig answered

ZooBC 36

https://youtu.be/-29dC73vmG8?t=52
https://zoobc.org/index.php?board=40.0
https://zoobc.how/?qa=tag/multisignature

ZooBC 37

Z00BC WHITE PAPER V1.1

Multisig Addresses

One of the address types we support is a multisig address, which is
the hash of a set of details regarding who is allowed to sign on behalf
of the address. We refer to this set of raw details as a multisig info.

This design leaves open the possibility that until the time of signing,
the set of addresses which control a multisig address doesn’t need to
be revealed.

Multisig Info Object

Field Description

MinSigs The minimum number of signatures out of the
provided address list which must be present to
execute a transaction from this multisig address.

Nonce A free number field allowing unique multisig
(“Access Code”) addresses to be created between the same set
of addresses.

Addresses An alphabetically-ordered list of account
addresses that may legally sign for this multisig
address. These addresses can, in turn, be
multisig addresses, allowing for hierarchical
multisig.

Z00BC WHITE PAPER V1.1

The Multisig Transaction Type

Z0oBC implements all aspects of multisig behavior through a single
transaction type. The behavior of this transaction type is somewhat
complex because it implements both on-chain and off-chain multisig
behavior, with the possibility to preserve the anonymity of the signers
and conceal the transaction being signed until the moment that all
needed pieces of information have been exposed to the blockchain.

The transaction body of a Multisig Transaction has 3 optional
components: a Multisig Info object (described above) revealing which
set of addresses may sign for the transaction; the transaction being
signed on (either the unsigned full data of the transaction or its
transaction hash), and a list of signatures on the transaction hash by
other signers.

To manage the multisig process, the node keeps three consensus
-managed tables: the Multisig Info table, the Pending Transaction
table, and the Pending Signatures table. When a Multisig Info object
Is included in a Multisig Transaction, it will be saved in the Multisig
Info table along with its hash (which is the corresponding Multisig
Address.) When an unsigned transaction is included with a Multisig
Transaction, the unsigned transaction and its hash are recorded in the
Pending Transactions table. When some signatures on a transaction
hash are included in a Multisig Transaction, a record for each is
accumulated in the Pending Signatures table.

ZooBC 38

B The Multisig Transaction Type Z00BC WHITE PAPER Vi1

In this way a Multisig Transaction gets executed as soon as all the
necessary parts (the transaction itself, the list of co-signers, and the
needed signatures) are added to the blockchain by being included into
validated blocks, independently of the order they have been received.
After adding any transaction with multisig-related data to the relevant
tables, each node will evaluate whether enough information is
available to execute the specified Pending Transaction.

Specifically: if, for the specified Pending Transaction, the sender
address is known to be a multisig address (because a Multisig Info
object hashing to that address has already been revealed), there are
enough signatures on its transaction hash in the Pending Signatures
table (where each signature must be from an address specified in the
Multisig Info), and the transaction is still valid at the time of application, then
the Pending Transaction is executed as if it was a normal transaction
on the blockchain occurring in place of the Multisig Transaction.

All three types of data have an expiry time, and so the Multisig
Transaction will only execute in the case that these conditions are met
in a timely fashion. Afterward, unused pieces of data will be pruned
from the consensus-managed local tables of each node.

ZooBC 39

Z00BC WHITE PAPER V1.1

Multisig Use Cases

The purpose of the complexity of this transaction type is to give users
the power through one tool to accomplish various flavors of multisig
transaction behavior. For clarity, some of the use cases which may be
satisfied by this design are described below.

Off-Chain Multisig

In this case, the behavior of the Multisig Transaction approximates
classical multisig behavior of Bitcoin and other blockchains, where
the account controllers work together off-chain to prepare a single
valid transaction that will be immediately evaluated and applied once
broadcast to the network.

In the simplest case, all optional parameters of a Multisig Transaction
may be supplied in one transaction, including the Multisig Info
describing who may sign for the account, the transaction details to
be executed by the account, and all needed signatures from the other
account controllers.

ZooBC

40

Z00BC WHITE PAPER V1.1

On-Chain Multisig

This may be useful in cases where some participants wish to prove
their existing signatures on-chain before others feel confident about
providing their own signatures, or in cases when another required
signer cannot be contacted off-chain by the other co-signers but may
be alerted by some third-party application that a multisig transaction
awaits his signature.

If the Multisig Info and Pending Transaction are already revealed,
other account controllers may submit their signatures for the
transaction as separate Multisig Transactions. In the extreme case,
each needed signer may submit a Multisig Transaction appending only
his own signature to the Pending Transaction hash, which will simply
be accumulated in the Pending Signatures table until the number of
signatures needed to execute the Pending Transaction is reached.

ZooBC 41

Z00BC WHITE PAPER V1.1

Anonymizing Multisig Addresses

This behavior may be useful in cases where it is desirable to not
reveal the controllers of an asset until they must act, especially if they
are in conditions where they must individually submit their signatures
on-chain. Alternately this may be used as a mechanism intended to
discourage someone from posting a transaction unless they really
mean it: a Pending Transaction may be irrevocably committed (signed
and ready to execute), giving anyone who possesses the Multisig Info
the power to single-handedly force the transaction to be executed by
revealing it.

Due to the structure of the Multisig Transaction, it is ok to submit a
Pending Transaction from a multisig address, and all needed signatures
on that transaction, before the Multisig Info (such as which addresses
may sign for the transaction) are revealed. To further create plausible
deniability for the actual multisig participants, many other accounts
may blindly submit signatures for the given transaction hash, even if
they are not co-signers of the multisig account. In this case, the Pending
Transaction will be executed as soon as a Multisig Info matching its
sender address is submitted in a separate Multisig Transaction.

> | VIDEO

E¥i[E Multisig and Key
ﬂ-_ % Management
=1

Concealing Pending Transactions

This behavior may be useful when it is not convenient for the controllers
of an account to pass around a partially-signed transaction, yet they
do not want to reveal what action they plan to take unless it collects
the necessary support of other account controllers (for example, a
board of directors voting to fire the CEO, who can herself access and
see the blockchain.] Like above, this may also be used as a privacy
protection mechanism, where a Pending Transaction will be executed the
moment any person who possesses it chooses to submit it.

ZooBC 42

https://youtu.be/byjU68M5TYI

B Concealing Pending Transactions Z00BC WHITE PAPER Vi1

Even if the Multisig Info is already revealed, the unsigned Pending
Transaction itself may be hidden from the blockchain until enough
signers have already submitted their signatures on its hash (in order
to produce the correct signature, they must be given the contents of
this transaction off-chain.) In this case, the Pending Transaction will
be executed as soon as its full data is submitted in a separate Multisig
Transaction.

Hierarchical Multisig

This behavior may be useful when complex organizational structures
are responsible for an asset. Say, for example, approval for a transaction
is needed from 2 out of 3 departments, where each department, in turn,
requires the approval of 3 out of 5 managers, and where perhaps a few
of the managers represent oversight committees which themselves
must cast a majority vote to approve.

Because a Pending Transaction may be any valid transaction on the
blockchain, it may also itself be a Multisig Transaction. In this way, the
creator of a multisig address may specify another multisig address as
one of the controlling accounts. There is no limitation on how many
multisig layers may be created this way.

In this case, a Pending Transaction may be created from the top-level
multisig address. Before this transaction may be executed, a signature must
be added by the controlling multisig address. The Multisig Transaction
to add this signature becomes, itself, a Pending Transaction which
must satisfy the conditions specified by its own Multisig Info before it
will be executed.

ZooBC 43

Z00BC WHITE PAPER V1.1

Fee Scaling (Governance)

[1zBC | [0.03zBC |

[; X3 @

One difficulty with transaction fees on any public and permissionless
blockchain network arises from extreme volatility in the value of the
underlying token. Ideally the cost of fees to process transactions will
remain approximately constant with respect to the stable currencies
which users exchange for the token. For example, if the average minimum
transaction fee is 1 token, this will fail to reduce network spam or
incentivize block creators when the token value is US$0.0001, but it
will likely make all transactions prohibitively expensive if the token
value reaches US$100.

There are many strategies to approach this issue. On one extreme, the
fee could be set by a trusted third party which signs such new information
against a public key agreed upon by the entire blockchain; but such
centralization is anathema to the ethos of decentralized systems, as it
can be manipulated by a single actor who is beyond accountability. On
the other extreme, nodes could attempt to draw independently from
public sources, such as exchanges, the value of the token in a stable
currency, in order to change the transaction fee amount to match a
fixed value in stable currency; yet, because such data is not tracked by
the blockchain’s own consensus, this could lead to forks when such
external information is not consistent when queried by different nodes
at different times.

ZooBC 44

B Fee Scaling (Governance] Z00BC WHITE PAPER Vi1

Therefore we conclude that safely reaching consensus on data from
outside of the blockchain, such as the token's value against other
currencies, cannot be accomplished automatically. We implement a
system by which operators of registered nodes on the network may
take a regular vote on the appropriate multiplier, which we call the fee
scale, for minimum transaction fees. This allows the transaction fee
amount to keep the same value against a stable currency, even if the
blockchain’'s main token value fluctuates.

It is potentially dangerous to put such a critical network parameter
in the hands of node operators. A more complete discussion of the
risk is presented in future work. However we prefer this risk over
the inherent risk of imposing a static minimum fee for the reasons
described above.

We prefer this risk because we believe it can be mitigated by balancing
two competing incentives of node operators which should constrain
each other: in the small scale, a node operator wishes to maximize
the transaction fees he collects in each block by pushing the network
fee scale higher; but on the large scale, network fees that are high will
reduce user’s willingness to pay for any transactions on the blockchain,
and this lack of usability may be reflected in the token price, which
determines the real value a node operator stands to gain, incentivizing
him to push the network fee scale lower.

The vote-based adjustment of the fee scale is accomplished via three
mechanisms: Node operators committing to their votes, node operators
revealing the votes they have previously committed, and the averaging
calculation used to compute the new network fee scale.

ZOOBC Q&A

[w]*E:[m] Getyour questions about
L Fee Scaling answered
Ope el

ZooBC 45

https://zoobc.how/?qa=search&q=fee

Z00BC WHITE PAPER V1.1

Committing to Fee Votes

First the node operator needs to cast their vote on how much, if any,
the fee scale should be adjusted. The fee is adjusted every month.
Each of these one-month periods is further divided into two phases:
a commitment phase, when the votes are cast, and a reveal phase, when
the votes are revealed and counted. During the commitment phase,
owners of nodes in the registry may submit a commit fee vote
transaction.

First, the node operator’'s wallet will create a fee vote object. This
object contains a recent block hash, the corresponding block height,
the user’s vote on what the new network fee scale should be, and
the account’s digital signature on the above information. Because we
intend for node operators to vote in a way that stabilizes transaction
fees against major fiat currencies, the wallet will collect this information
from exchanges, calculate an appropriate value by which to multiply the
fee and strongly recommend the value of the vote to the user. However,
there is no way for the blockchain to validate this value, therefore it is
only a recommendation, and the user may enter any value they wish.

The extra pieces of information in the fee vote object (block hash,
account’s signature) are included to make the hash of the fee vote
object resilient to attacks where an attacker may simply guess what
fee scale the user is voting for, hash their guess, and confirm their
guess by comparing it to the vote commitment hash.

ZooBC 46

B Committing to Fee Votes Z00BC WHITE PAFER V.1

Because recent block hashes will be different for each voting period,
and a digital signature is performed on these properties, anyone not
possessing the account’s private key is unable to reproduce the object
and is therefore not able to reproduce the resulting hash of the object
and determine by a guess-and-check method the vote being committed
by a user.

Once the fee vote object is prepared, its hash is computed and included
In the commit fee vote transaction, which is then signed and submitted
to the network by the user. When this transaction is included in a block
and applied, a record will be kept in the node’s database indicating the
commitment hash. Such transactions may only successfully be included
in blocks during the commitment phase of the voting period.

Revealing Fee Votes

After the commitment phase of the voting period has concluded,
the reveal phase begins. This is when the votes are recorded on the
blockchain and accumulated. During this phase it is ok for the owners
of registered nodes to submit a reveal fee vote transaction.

The reveal fee vote transaction includes the full contents of the fee
vote object which the user previously committed to. It is then signed
and submitted to the network. In order to be accepted by nodes as
a valid transaction, the hash of the submitted fee vote object must
match the commitment hash already submitted in the commitment
phase by the user.

ZooBC 47

Z00BC WHITE PAPER V1.1 Revealing Fee Votes |

Additionally it must be verified that the “recent block hash” parameter
Is within the time frame of this voting period and that the digital
signature on the parameters is a valid signature for the node operator’s
account.

When the transaction is successful, the user’s vote is recorded in
the blockchain. Values for new votes are accumulated during the
reveal phase.

Adjusting the Network Fee Scale

The end of the reveal phase marks the end of the entire voting period,
which immediately begins the next voting period by initiating another
commitment phase. On the first block of the new voting period, a
calculation is performed of all the successfully revealed votes from
the previous voting period to determine the new value of the network
fee scale parameter.

The collected votes for the new value are ordered from least to greatest,
and the number in the middle of the ordered list is selected as the new
value (the median value.] We use this approach, rather than averaging
the votes, to avoid giving a small number of outliers the power to
significantly bias the outcome. In the case that most votes are clustered
together, even if a minority voted much higher or lower, we select
the middle of the cluster as the most accurate representation of the
majority opinion.

ZooBC 48

9

@
Cllol

6

(=)

6

©:

After this value is selected, it is further constrained such that it may
only increase to a maximum of twice the previous value, or decrease
to half the previous value. This reduces swings in the fee and creates
a degree of predictability and stability for users.

This new network fee scale value is applied going into the new voting
period. During this time, users can expect the parameter value to be
constant, and wallets can query the nodes for the current value of the
parameter in order to automatically recommend a permitted minimum
transaction fee.

Depending on experiments, we may also allow a grace period for
transactions created during the previous fee scale period to still be
valid. We wish to avoid a condition where congested transactions in
the mempool, which included a fee that was legal at the time they
were submitted, are suddenly excluded as the result of a change in the
minimum fee parameter.

ZooBC 49

Z00BC WHITE PAPER V1.1

Note on General Governance

While the description of voting mechanics in the above sections are
specific to managing the "network fee scale” parameter, they could
easily be applied to any other network parameter deemed safe to
be placed in the hands of the majority owners of the node registry.
These could include the maximum number of transactions per block,
the average time between blocks, the rate at which new nodes are
admitted into the node registry, or others.

Depending on the success of this limited form of governance
mechanics in the first version of the ZooBC blockchain, we may apply
this strategy to other constant parameters in future versions. This is
consistent with our gradual and conservative approach to extending
Z00BC through an iterative process of analysis, design and deployment.
A list of constants that ZooBC needs to operate is at the end of this
paper.

ZooBC 50

Z00BC WHITE PAPER V1.1

Node Registration

Although anyone can run a node and connect to the network, we
restrict the creation of blocks and the distribution of coinbase rewards
to a subset of registered nodes. The process of how new nodes can
become registered, and how nodes are ejected from the registry, is
managed entirely by the network protocol. This means that no single
user or account has the authority to promote a node or change its
status; nodes only change status by the automatic application of the
protocol rules. This design has three key motivations:

To prevent theft of private keys;

To prevent an attacker from taking over a majority of
nodes;

To allow for the removal of unproductive nodes or those
using a novel, unexpected, method to abuse the network

Following is a more detailed explanation of the purpose and mechanism
for each aspect of the above. First, we separate the private key of the
node owner's ZooBC account from the process of block creation. In
blockchains where blocks are secured via digital signatures rather
than a direct Proof of Work, the private key of the account of the user
managing the node (the account that receives the coinbase rewards])
must be present directly on the node, which is an online computer
used to create blocks.

ZooBC 51

Z00BC WHITE PAPER V1.1 Node Registration]

This creates a security hazard where the account’s private key may be
hacked from, or intercepted by, an attacker, if the computer hosting
the node is breached or a Man In The Middle (MITM) attack is executed.
For hosted nodes running in Virtual Private Servers (VPS), it could
be as simple as the operator of the data center accessing the VPS
file system and reading the private keys, giving them access to the
account with funds.

Second, we regulate the rate at which nodes can join the family of
block creators, in the node registry. To prevent attacks on the Proof of
Participation algorithm where an attacker can register many nodes’
public keys at the same time (thereby flooding the node registry and
controlling a large majority of nodes capable of creating new blocks),
the protocol rules only allow a limited number of new and active nodes
to join the node registry during each set period. Restricting the
registration of new nodes en masse preempts this attack.

Third, we can remove nodes that are offline (or simply don't participate in
the network) from the node registry. The Proof of Participation algorithm
described below has a scoring system that punishes nodes that don't
participate. Any nodes which fall to zero participation score are
automatically removed from the registry; if they later become active
they are automatically added to the queue to re-join the node registry.

Beyond these motivations, it is also used as a weighting coefficient on
a node’s likeliness to collect coinbase rewards. This incentivizes nodes
to remain online and participating. How this score is calculated is
described in detail in the later section on Proof of Participation.

By maintaining a federation of nodes which continuously prove their
active participation on the network, we create a foundation for the
application platform we will deliver with the next version of ZooBC.
Using the blockchain to reach consensus on the state of the registry
will allow DApps to leverage faster federated consensus algorithms
between registered nodes in future versions.

ZooBC 52

B Node Registration Z00BC WHITE PAPER V1.1

Although the node registry is not leveraged in its full capacity for this
first version of the ZooBC technology, we intend this first deployment
to gather information about its safety, the ease and intuitiveness of its
management by node operators, and how it can be abused, in order to
address any major issues before continuing to develop new strategies
on top of it.

@ VIDEO

=% = Fixing Critical [E How Node Registration
M Bugs of Node i F and Participation in
O Registration -Ek. ZooBC Work

~[m] What Do You [m]i#[m] How Can Users
i Need to Run the || Register Their
1Ly Z00BC Node? Nodes to the
ERRYA e
[w] What Tips Could You Give Ok.cl0 What to Keep in
to People Who Intend to % Mind When -
= Run the ZooBC Nodes? Running
[=): e [=]EF: the ZooBC Node
[]¥#4[E] Why Do Nodes Need to %} -[w] What Cana Node
o = Register Themselves ¥ Runner Do to Make
=] on ZooBC Blockchain E-:t. Sure He Always Stays
” Network Before " in the Node Registry
Finding Blocks? and Gains Rewards?
=h) Forum
[w]=%¥[E] Joindiscussions [EE[R] Joindiscussions about
! 3 about Network 3 Node Registration
Efl"'. - E'.. -

ZOOBC Q&A

[=] 'E Get your questions
about Nodes
answered

y1[m] Getyour questions
=n about Registration
answered

ZooBC 53

https://youtu.be/AzatgUMRdsY
https://youtu.be/SALlJhKbNlE
https://youtu.be/2Y1HfTRqg6g
https://youtu.be/GMQ4gLle5CI
https://youtu.be/hd_Ag3NoZ-Y?t=81
https://youtu.be/SklW9Wsf0b0?t=67
https://youtu.be/Y5hG3s7RJeM
https://youtu.be/SklW9Wsf0b0
https://zoobc.org/index.php?board=59.0
https://zoobc.org/index.php?board=30.0
https://zoobc.how/?qa=tag/registration
https://zoobc.how/?qa=tag/nodes

Z00BC WHITE PAPER V1.1

The Node Registry Life Cycle

Once a user has installed a node and allowed it to synchronize with the
network, she may apply for a spot in the node registry by submitting
a register node transaction. This transaction includes some details
about the node, as well as a proof that the owner controls the node’s
private key.

Upon submission of this valid registration request, the node enters
into the registration queue. The creation of newly available seats in the
registry, and the replacement of nodes in the registry by those in the
queue, are strictly regulated by the protocol rules. When seats become
available, new nodes are admitted into the registry from the registration
queue.

When a node is firstin line in the registration queue, the protocol first
requires it to prove its participation in the network for a brief period
before admitting it to join the registry and begin creating blocks. If a
node remains in the queue for more than 30 days without participating,
its locked funds are returned to the node’'s owner account, and the node
is removed from the queue. This means that if the node owner wants
to add its node to the queue again, she needs to submit a register node
transaction and pay the corresponding fee.

Once a node has been admitted into the registry, it becomes subject
to the Proof of Participation algorithm, which will gradually modify
the node’s participation score upwards or downwards based on its
behavior on the network. The registry seat also entitles the owner
to participation rewards (coinbase], with the amount of rewards
received being proportional to the node’s participation score.

ZooBC 54

During the node’s tenure in the registry, the node’s owner may update her

node’s details as she sees fit by submitting an update node transaction.
For example, if the node owner needs to change the node’s key pair,

or if the owner decides to increase her locked balance to increase her

chances of remaining in the registry.

Additionally, if the node’'s owner loses her account’s private key, so
long as she still controls the node's private key, she may submit a
claim node transaction from her new account to recover her locked
funds, although this will remove the node from the registry.

This has the deliberate consequence that if an attacker can access
your node’s private key, he can effectively claim any funds you had
locked to register the node. This forces node owners to take care of
the security of their nodes, while making a node useless if hacked.
The significance of this risk to the security of the proof of participation
algorithm is discussed in more detail below.

A user may wish to remove their node from the registry deliberately
to reclaim their locked funds, in which case they can submit a remove
node transaction. This will credit any locked funds for the node back
to the owner’s account, and the node score is lost. There is no way to

reclaim the locked funds of the node without simultaneously removing
it from the node registry.

Finally, a node may be automatically ejected from the registry if its
participation score drops to zero. In this case the funds locked with
the node registration are still left with the node, that automatically
joins the queue to re-enter the node registry, sparing a node owner in
good faith to have to pay the fee to add the node to the queue again. As
described above, as long as this node remains offline, it will repeatedly
fail the trial period before it can be added to the registry again until it
Is removed from the queue.

Some aspects of this general process are discussed below in more
detail.

ZooBC 55

Z00BC WHITE PAPER V1.1

The Node Registry

Each node on the network maintains a table we call the node registry.

The registry serves first and foremost as a mapping between user

account addresses and the nodes they operate, empowering the nodes
to sign blocks on the user’s behalf without exposing users private keys,
and allowing the user’s account to be directly rewarded for the node’s

participation.

Each node’s entry in the registry declares the following properties:

Field

Description

Public Key

The public key corresponds to the node's
configured private key. When blocks or Proof of
Participation messages are produced by a node,
the signatures can be validated against this key.

Account Address

The account address of the node owner's
account. This account may legally change or
remove the node registration, and any participation
rewards earned by the node are credited to this
account.

Locked Balance

An amount of funds which the node’s owner has
put up as collateral to compete for a spot in the
registry, and to incentivize her to maintain the
security of her node’s private key.

Locked Balance

An amount of funds which the node’s owner has
put up as collateral to compete for a spot in the
registry, and to incentivize her to maintain the
security of her node’s private key.

ZooBC 56

Z00BC WHITE PAPER V1.1

The Node’s Public Key

Each node keeps its own private key, which is used to sign blocks on
its owner’s behalf. The corresponding public key is published to the
network through the process described below, allowing other nodes
to validate that blocks and peer-to-peer messages which originated
from this node are authentic.

In the simplest case the node’s private key is kept on the node’s hard
drive in a configuration file, however for node operators who are more
security conscious, Blockchain Zoo is working to allow a separate
hardware device to sign on behalf of the node. This is to mitigate the
following vulnerability:

If @ node's private key is compromised, the attacker may be able
to impersonate this node on the network to others. However, as
described in the Claim Node section below, the attacker will also
be able to claim the node operator’s locked funds and kick the node
from the registry.

In the event that a user learns his node’s private key may have been
compromised, they can rotate the node’s key pair and update his
entry in the node registry at any time, by signing an update node
transaction with his account’s private key.

ZooBC 57

Z00BC WHITE PAPER V1.1

Locked Balance

To maintain a node in the registry, the owner’s account must lock some
amount of ZooBC tokens. When a node is added to the registration
queue, this amount is deducted from the owner’s account and kept in
trust by the network. Later, if the node is ejected from the registry
queue, or if the owner removes it from the registry or the queue
deliberately, the locked funds are returned entirely to the owner’s
account.

Locked funds are used to prioritize the addition of nodes to the
registry. New spots in the registry are only opened gradually, and
the “size of a node’s locked balance is used to prioritize which node
in the queue will take the next available spot. In this way, although
/00BC doesn’t use a variation of Proof of Stake consensus, a user’s
funds on the network are still relevant to his ability to be admitted
into the noderegistry in a timely fashion. In this first version of the
Z00BC technology, we still require this fund locking as a mechanism to
prevent Sybil attacks, as funds on the network are a scarce resource,
and keeping them locked ensures that they cannot be used twice by
the same actor.

However, we have confined the significance of a user’s balance to this
particular corner of the protocol; in future versions of the technology
we will apply an alternate Sybil prevention mechanism unrelated to
the user’s account balance. We will substitute that without otherwise
modifying the mechanics of the system. Doing so will fulfill a major
long-term design goal of the ZooBC project: management, on a
trustless network, of assets that have a value greater than the market
cap of the native cryptocurrency of the blockchain, or even running a
blockchain without native currency while at the same time guaranteeing
its trustworthiness and security.

ZooBC 58

Z00BC WHITE PAPER V1.1

The Registration Queue

The registration queue is a list of nodes which have been identified by
a node registration transaction, and whose owner has committed an
amount of locked funds, but which have not yet been admitted into the
node registry.

The queue is prioritized by the amount of funds locked by each
registering account, such that the account which committed the most
funds in its registration transaction will be the first in line to be added
to the registry when new admissions are allowed.

New admissions are taken from the queue into the registry at a reqular
interval. The rate at which new nodes are accepted is a function of the
existing size of the node registry, such that when the registry is small,
new nodes will be added slowly, but as the registry grows new nodes
will be admitted more quickly. This rate is fundamentally a security
requirement of the Proof of Participation algorithm, as an attacker
could trick the algorithm if he were suddenly able to take control of
a major fraction of the registry. Admitting nodes gradually gives the
algorithm enough time to remove cheating nodes before they can
accumulate a majority. (See Node Registration, above)

ZooBC 59

Z00BC WHITE PAPER V1.1

Registering a Node

Before registering her node, the owner must collect a special
message from it called a proof of ownership. This message simply
contains the owner’s account address, a recent block hash, the height
of the block hash, signed off by the node’s private key.

The proof of ownership message is then bundled inside a register
node transaction, together with the node’s public key, the amount of
funds to lock from the sending account, the account’s signature, and
the fee for the transaction. To prevent malicious users from abusing
the register node transaction, the fee to add a node to a queue is much
higher than most transaction types.

When this transaction is executed by the network, the balance specified
by the owner will be locked, and the node will be added to the registration
queue. The locked funds are taken from the user’s account and held
in trust by the network, until such time as the node exits the queue
or registry for any reason, at which time the funds are returned to the
user’'s account in full with a 1-day delay.

The wallet application we provide helps to smooth the process of
collecting the proof of ownership message from the user’s node and
assembling the transaction for the network, ensuring the user has an
intuitive interface and needs no specialized technical knowledge of the
system to perform this operation.

ZooBC 60

Z00BC WHITE PAPER V1.1

Claiming a Node

By design it is not particularly dangerous if a user loses control of a
node’s private key, since it is only used to create blocks, and to prove
a node’s identity in the Proof of Participation algorithm. As described
above, this isolation is a key motivation for separating the node’s
private key from an account’s private key.

However, there is a type of "key sharing” attack on the Proof of
Participation algorithm where all nodes may voluntarily share their
private keys with each other. If all users agreed to share their node
keys, they would undermine the central assumption the algorithm
Is premised on: namely that only a user's node may generate a valid
digital signature, proving the node was online and participating with
the network at the time.

Therefore, in the case that a user comes into possession of another
node’s private key, ZooBC allows this user to “claim” the node’s locked
funds, which will also eject that node from the registry. Such a “key
sharing” attack then requires enormous trust in the other participants
in the scheme not to steal funds from each other, while still allowing
a user to limit the damage that can be done to them by only locking in
theirnode an amount of funds they are willing to put at risk. This
incentivizes node operators to take seriously the security of their
nodes, as nodes are custodians of the private keys that control such
locked funds.

Ejection from the Node Registry

If atany time the participation score of a node in the registry drops
to zero, the network’s consensus rules dictate that the node will
automatically be returned from the registry into the queue. In this way
a node must be consistently online and participating to remain in the
registry and collect coinbase rewards. Ejection from the queue does
not penalize the user’s locked funds, which are returned in full to the
node owner’s account.

ZooBC 61

Z00BC WHITE PAPER V1.1

Proof of Participation

We propose a novel consensus algorithm that involves proving that
registered nodes are reliably online and propagating data to each other,
computing a participation score for each, and using this score as a
weighting coefficient to the node’s pseudo-random chance to be elected
to receive coinbase rewards. If a registered node’s participation score
falls to zero it is automatically ejected from the node registry.

Our intentions with this strategy include promoting the availability of
network nodes, more evenly distributing stewardship of the blockchain
history among many parties, and more evenly rewarding the participation
of all nodes composing the network. Additionally, we create an incentive
scheme for the network of all registered nodes to organize itself into
an optimal topology which minimizes the number of hops any piece of
data must take to propagate through the entire network.

ZooBC 62

B Proof of Participation

ZooBC 63

VIDEO

Z00BC WHITE PAPER V1.1

E E What Is

o

Proof of Participation

4@ How Does the
- Proof of Participation

about Core General

ZOOBC Q&A

=155

= in Simple Words? O Algorithm Work?
Proof of Participation [E¥rE Why Does ZooBC
VS. Other Consensus | | Blockchain Use a
Algorithms S Proof of Participation
= = Algorithm?
FORUM
[w]¥%:[m] Join discussions ga[m] Join discussions about

Proof of Participation

[E@E-3m Cet your questions
about Participation

answered

Get your
questions about

answered

Proof of Participation

https://youtu.be/4Imu9W1mFdQ
https://youtu.be/1LS3by1a4_A
https://youtu.be/b2KHVINwmDg
https://youtu.be/miDlXrW23eM
https://zoobc.org/index.php?board=48.0
https://zoobc.org/index.php?board=2.0
https://zoobc.org/index.php?board=29.0
https://zoobc.how/?qa=search&q=proof+of+participation
https://zoobc.how/?qa=tag/participation

Z00BC WHITE PAPER V1.1

Overview

“Participation” could be defined in many ways, but for the purposes of
this algorithm we mean that a node is transmitting pieces of blockchain
-related data (such as blocks and transactions) to many other nodes
in a timely fashion. While tracking the entire set of node-to-node
transmissions is infeasible, we use a random sampling strategy to
pick some small subset of transmissions from the network to evaluate
who is participating.

Such proofs of transmission would be meaningless if they could
be produced on demand; therefore, nodes must regularly publish
“commitments” of their transmission activity to the network.
When a node is called on to produce some small sample of its past
transmission activity, it should also prove that the records it produces
were included in commitments already published on the blockchain,
which makes such records impossible to produce just-in-time.

The ZooBC network protocol specifies that each transmission should
return a receipt: a special object, digitally signed by the receiver, which
uniquely identifies the sender. The receipt is a claim that a particular
piece of data was transmitted between those nodes at that time. A
receipt object also includes a commitment: the Merkle Root of a set
of other receipts which had previously been collected by the receiver.

ZooBC 64

B Overview Z00BC WHITE PAPER V1.1

When a node creates a block, it can include some receipts of its past
transmission activity. These receipts can be validated objectively by all
nodes using several criteria. The number and quality of the included
receipts are used to calculate whether the node’s participation score
should rise or fall.

Because we wish to measure only recent activity on the network, we
Impose a height filter on receipts which may be included in a block,
such that receipts expire some number of blocks after they were created.
The expiration time is a function of the number of registered nodes,
because a greater number of block creators means a greater average time
between blocks created by any given node, which consequently expands
the average time we expect between a receipt’'s publication and the
time it was previously committed.

Because we wish to prove the node has received and propagated the
full set of data items on the blockchain, we impose a data filter on the
receipts which may be included in a block. Based on the number of
data items recently included in the blockchain, we pseudo-randomly
restrict the set of data hashes which may be legally included, in a way
that is not predictable before the block creator’s turn. This ensures
that a node must keep receipts from all data items transmitted in
order to reliably produce the randomly-selected subset.

A receiptis only worth a higher participation score if the publishing
node can prove that the receipt was a member of a commitment
(Receipt Merkle Root) already included in a previously published
receipt, which proves the new receipt that matches these filters
existed before the filter criteria were known. When such a proof
accompanies a receipt in a block, it is defined as a linked receipt.

If anode does not have any receipts to link, he can still include un-linked
receipts (not included in a Merkle Root published by another node in a
previous receipt] to earn a much lower score. While these receipts prove
little about the publishing node, they do include commitments from
their creators, which can later be used to prove pre-existence when
those creators publish and link their own receipts.

ZooBC 65

Z00BC WHITE PAPER V1.1 Overview I

In order to compute the change in participation score, we assign each
block a value by counting a small number of points for each un-linked
receipt and a larger number of points for each linked receipt. There is
a fixed maximum number of receipts which can be included in a block,
so we can clearly state that the maximum block value is given for a
block filled with linked receipts, and the minimum block value (0] is
given for a block with no receipts.

If the total value for the block is more than half of the maximum block
value, the creating node’s participation score will increase for this
block; otherwise it will decrease. In the case that a node misses its
turn to create a block entirely, it will forfeit twice the amount of a
participation score as if it had produced a block with zero receipts.

ZooBC 66

The Receipt Object

Z00BC WHITE PAPER V1.1

Field Size Description
Sender Public 32 bytes | The public key of the sending node
Key
Receiver Public | 32 bytes | The public key of the receiving node
Key
Data Type 4 bytes | A code indicating the type of datum
that was sent. (Block, Transaction,
File Chunk, etc.)

Data Hash 32 bytes | The hash of the Datum that was sent
Ref Block Height| 4 bytes | The height of a recent reference block
Ref Block Hash | 32 bytes | The hash of the recent reference

block at the height specified
Receipt Merkle | 32 bytes | A Merkle root of receipt objects
Root previously received by the sending
node
Receiver 32 bytes | The digital signature of the receiving
Signature node (receipt producer) on all of the
above data
Total 200 bytes

ZooBC 67

Z00BC WHITE PAPER V1.1

Producing Receipts

When a node transmits some piece of data to another node (such as
a transaction or block], the receiving node (after validating the data)
should produce a receipt object and return it to the sender. This
receipt should be created and returned regardless of whether the
receiving node had already received and rebroadcast the same data
from another node, so long as the data itself is valid.

Tlme 1
.

Recelpt J

The receiving node will populate the “Sender Public Key” with the
public key of the node which sent it the data, and the "Receiver Public
Key” with its own node public key. "Data Type” is filled with a type
code stating the data is a block, transaction or potentially other kinds
of transmission, and the “Data Hash” field is filled with the hash of
the data item which was transmitted. “Ref Block Height" is filled with
the node’s current block height, and “Ref Block Hash” with the hash
of the block at that block height.

ZooBC 68

Z00BC WHITE PAPER V1.1

To fill the "Receipt Merkle Root”, the receiving node will look up a
recent Merkle Root in its “batch table” (described below.] While the
content of this Merkle Root field cannot be validated by other nodes,
it is in the receiver’s interest to include a proper commitment which

he can later use to prove the prior existence of other receipts he has
collected.

Finally the node signs all the above data with its private key, guaranteeing
the receipt could not be produced without his involvement. The receipt
object is then sent back to the node which transmitted the data.
Repeated failure to return a valid receipt object may result in the sending
node blacklisting the receiving node.

Collecting Receipts

As a node broadcasts pieces of data to other nodes, it will collect
and save the receipts from each receiving node that are returned.
These receipts are organized into batches, where a Merkle Root is
calculated for each batch which can be included in future receipts
produced by the node.

The number of receipts which we allow to be proven by a single Merkle
Root is limited, therefore it is not in the node’s interest to save any
receipts which it already knows will not be usable later. The node can
safely discard any receipts which it already knows will not be permitted

to include in a future block, in particular receipts which do not match
his peer filter.

ZooBC 69

Z00BC WHITE PAPER V1.1 Collecting Receipts |

The maximum batch size is governed by a constant defined in the
protocol, rmr max depth, which is the maximum allowed depth of a
Receipt Merkle Tree. Functionally, this translates into the maximum
number of intermediate hashes a node is allowed to publish along
with a receipt to prove its membership in a previously published
Merkle Root.

Receipts only need to be collected in memory by a node [i.e. not written
to the hard drive) until the node is ready to finalize the batch and then
write them to the database. When it is time to finalize the batch, the
node will first compute the Merkle Root of all the receipts in the batch
and save a new record in the batch table connecting the root to the
block height at which it was created.

The node then adds all of the receipts included in the batch to the
receipt table. Each record in the receipt table will specify the Batch
ID (Merkle Root] that the receipt belongs to, and also its Sequence
Number within the batch.

In this way, as the node collects receipts, it keeps a personal record of
all the information it will later need to find out if one of its commitments
has been published by another node and to construct the necessary
proof (or “link”) that some of its receipts were previously committed.

ZooBC 70

Z00BC WHITE PAPER V1.1

Batch Table Structure

Field Type Description
Batch Merkle 32-byte | The Merkle root of all receipts included
Root blob in this batch.
Created Height | 4-byte int | The block height when this batch was
created.
Receipt Table Structure
Field Type Description
Batch ID 8-byte int | The first 8 bytes of the Batch Merkle
Root

Seq Number | 4-byte int | This receipt’s position within its batch

Receipt Hash 32-byte | The pre-calculated hash of the receipt
blob object

[Receipt Datal The full data of the receipt object
structured the same way as the
receipt object specified above.

ZooBC 71

Z00BC WHITE PAPER V1.1

Pruning Old Receipts

- DOR0 =
B it
g \ @) | e -
 urug | R S | — 'jﬁ
@ =) | e Z
@ e |
‘;.‘n‘.a"g_ ==
Ll [—
|
Tarin A=
Pl uLLin [—
IR \ 72
y HALE

As all receipts have an expiration time (based on the block height they
include), there is no benefit in keeping them forever. Additionally, each
batch stores the block height from when it was created, making it
easy to detect when all the receipts within a batch have expired. These
expired receipts can be safely deleted.

The node will run a pruning process which occasionally checks if there
are expired batches, and clean them from the database. Therefore,
the entire receipt storage process should fit in a constant memory
footprint, cleaning the old ones as new ones are accumulated.

Proving Linked Receipts

When a receipt is included in a block, it can either be un-linked
(meaning its prior existence cannot be proven by any Merkle Root
previously published) or linked (when prior existence can be proven.]

ZooBC 72

B Proving Linked Receipts Z00BC WHITE PAPER Vi1

When a node wishes to link a receipt, it must include a set of
intermediate hashes which, when hashed in sequence with the
hash of the receipt, yield a Merkle Root hash which has been
previously published in a block.

(%

J

In order to do this, when constructing a block, the node will first
compare the set of Receipt Merkle Roots it has stored to all recently
published Receipt Merkle Roots, and begin searching through any
receipts it possesses which are already included in one of these
previous Merkle Roots. When it finds a receipt that matches the filter
criteria for receipts in the new block it is creating, the node can use
the precomputed set of intermediate hashes composing that Merkle
Root to look up which intermediate hashes it must include with the
new receipt to prove the linkage.

In practice, proving the link is quite straightforward: first, hash the
receipt. Then, find the hash of the string made of that receipt hash
concatenated with the first provided intermediate hash. Then, hash
the obtained result concatenated with the next provided intermediate
hash. Repeat this step for all provided intermediate hashes. If the
result at the end precisely matches a recently published Merkle Root,
this proves the receipt object must have already existed at the time
that Merkle Root was created, and the link is valid. If it matches none,
then the block creator has tried to forge a link where none exists, and
the entire block becomes invalid.

ZooBC 73

Z00BC WHITE PAPER V1.1

The Height Filter

As described above, each receipt to be included in a block must be
valid according to different filters, which are parameterized when the
block is being created and can be objectively validated by other nodes
when they receive the block. The simplest of these is the height filter.

Each published receipt contains a block height and the corresponding
hash of the block at that height. It is possible to craft a receipt that
specifies an earlier block height than when it was produced, but it is
not possible to produce a valid receipt for a future block height, as this
would require foreknowledge of the block hash at that future height.
Therefore we can say that a receipt was created no later than the block
height at which it was created and signed.

Each time a node is added or removed from the registry, the network
recomputes the receipt expiration time, which is the maximum
difference allowed between the block height at which a receipt
was created and the block height at which it is published. When a
receipt is selected to be published, the node will compare its age
to the receipt expiration time to determine its validity, and other
nodes will confirm this when they validate the receipts published
in the new block.

In order to maintain or increase its participation score, a node must
reliably publish linked receipts. To give a node a fair chance to survive
in the registry, the receipt expiration time must be greater than the
average expected time between a previous block publishing one of its
receipts, and the node being allowed to publish a receipt that links to
it.

For this reason, the expiration time is computed as a function of the
registry size, as the number of nodes in the lottery to create blocks
can be used to determine the average chance that a certain number
of receipts from a node have been previously published within a given
timeframe. We will continue to experiment with this function through
our alpha and beta network testing to reach the best algorithm to keep
this timeframe secure.

ZooBC 74

Z00BC WHITE PAPER V1.1

The Peer Filter

The most complex filter imposed on receipts is the Peer Filter. The
first objective of this filter is to require that each node in the registry
connects to a diversity of other nodes and that the selection of these
preferred peers is random and beyond its control. This minimizes an
attacker’s ability to selectively favor his own other nodes with the Proof
of Participation algorithm, as on average he would need to control
almost all of the registry and withhold his participation from all of the
remaining nodes in order to eventually create a more valid chain.

We divide time into network topology periods of 60 blocks. Every 60
blocks, the network will pseudorandomly compute an ordering of all
nodes in the registry, and use this ordering to assign a set of preferred
peers to each node. Each node can easily compute its own preferred
peers and connect to them in favor of others. More importantly, when
the node publishes receipts later, the receipts it is allowed to publish
must come from one of its assigned peers at the time the receipt was
created.

The second objective of the filter, closely connected with the first, is to
ensure that each node in the registry has a fair chance to have their
previous receipts published. This helps create some statistical certainty
and uniformity in how many blocks we can expect on average between
any given node’s receipts being published, which helps guarantee that
even honest nodes do not make their receipt selections in a way that
accidentally excludes some other honest node.

ZooBC 75

Z00BC WHITE PAPER V1.1 The Peer Filter W

Beyond the above properties, this preferred peer assignment strategy
also gives us the opportunity to optimally organize the peer-to-peer
network topology of nodes in the registry. By optimally, we mean that
assuming all nodes are online, for a network size N, and a number of
preferred peers P, we can guarantee that'a new transmission is
gossiped to the entire network in a maximum of H hops, computed:

H = ceil (log, (N))

For example, if each node has 20 assigned peers to broadcast to, even
In a registry of 50,000 nodes, the broadcast will reach all nodes after
only 4 hops.

While decentralization prevents us from forcing any given peer to follow
this preferred peer assignment, it creates a strong crypto-economic
incentive for nodes to comply with this connection strategy: if they do
not collect receipts from their assigned peers in a given time period,
they will be unable to publish receipts later which pass the peer filter, and
subsequently their participation score will fall, reducing the amount of
coinbase rewards they will collect and eventually ejecting them from
the node registry altogether.

ZooBC 76

Z00BC WHITE PAPER V1.1

The Data Filter

The two filters above are known in advance to the node collecting
receipts, and a node could pass them by only transmitting a few pieces
of data to each of its peers during each network topology period.
Because we wish to incentivize nodes to transmit all relevant data,
we impose a data filter on the receipts that can be published in a
block, such that only receipts for a small random subset of all data
recently transmitted may be included in a given block.

In practice, the node keeps count of the number of blocks and
transactions that have been published since the receipt expiration
time. (This counts only transactions included in blocks, so the
number for a given block height is strictly in consensus for all
nodes.)] This number is used to calculate a filter width, a number
between 0 and 1, which represents the likelihood that the hash of any
given block or transaction is good to be published in a new block.

A receipt passes the data filter if, for the BlockSeed and FilterWidth
at block height H, and for the DataHash of a receipt R, the following
condition is true:

(hash (BlockSeed, +) [81/(2"64)) < FilterWidth,

Therefore, in order to have a reasonable chance of being able
to provide enough receipts which pass the data filter when
called on to produce a block, a node must collect receipts for
all data transmissions which occur during this period.

ZooBC 77

Z00BC WHITE PAPER V1.1

Coinbase Distribution

Conventionally, only the node which produces a block on the network is
rewarded with newly minted tokens. If the network becomes very large,
the chance that any given node will produce a block (especially one with
a lower participation score] within a specific period, and therefore
receive a reward, grows small

One of our major objectives with the Node Registration and Proof of
Participation algorithms is to more fairly reward the full set of network
participants, and to do so in a more timely manner. In keeping with this
goal we implement a pseudorandom lottery to reward many accounts
per block, with participants’ chance to win being weighted by their
participation score.

=h| Forum

[E]%%[E] Request Testnet [Egd@m Join discussions
Tokens 7E about Coinbase

Ot [=]%

ZOOBC Q&A

[m]%ym Getyour questions [w]¥¢:[m] Getyour questions
! about Coinbase about Coins
(=]

=] 1 answered answered
-

Here we detail how we compute the amount of new tokens minted per

block, and how they are distributed to network participants.
ZooBC 78

https://zoobc.org/index.php?board=82.0
https://zoobc.org/index.php?board=28.0
https://zoobc.how/?qa=search&q=coinbase
https://zoobc.how/?qa=tag/coins

Z00BC WHITE PAPER V1.1

Coinbase Schedule

Styled after Bitcoin, many blockchains offer a fixed reward per block
for some period of blocks, after which the reward amount is cut in
half for the next period, and so on. This geometric reduction ensures
that the earlier participants are rewarded more than the later ones,
and also that the number of tokens produced will approach, but not
exceed, a target total supply.

We feel it is cleaner to define a smooth curve across all blocks rather
than explicit halving events, such that the number of new tokens
produced by a block is a simple function of its block height. For this
curve, we take a window of a common sigmoid function:

1/7(1+eM-x))

Where x ranges from approximately 2-6, while we still evaluate the
parameters. This window is stretched over a period of 180 months (15
years] to give the coinbase curve.

We prefer a function of this form over a pure logarithmic curve (which
other networks such a Bitcoin approximate with periodic halvings)
because as a pure curve, this would yield an inordinate number of
coins released in the first few years, which we would prefer to leave
for later participants.

Based on this rate of distribution, ZooBC expects to reach a target
supply of 33'333'333 tokens over 15 years (the exact values will be
evaluated and announced before the Beta version goes online.]

ZooBC 79

Z00BC WHITE PAPER V1.1 Coinbase Schedule

Total Distributed VS Per Month

w
S
o
o
S
o
o
o
\
S I I
|
\
|
|
\
B I I
|
\
|
|
\
L
|
|
|
|
|

Jan 2022 Jan 2024 Jan 2026 Jan 2028 Jan 2030 Jan 2032 Jan 2034
I Total Tokens Distributed Il New Tokens This Month

Example token distribution based on the Logistic function, using window x={3...6}

Use the interactive Google Sheet and suggest to us the best curve

by copying the document and editing the fields with a yellow back-
ground - here.

ZooBC 80

https://docs.google.com/spreadsheets/d/1-5A19uSqTYUQ35Ivuka6huxz8wo0yB2K9UYaaWyllCU

Z00BC WHITE PAPER V1.1

Recipient Selection

For each block, a list of coinbase recipients is computed deterministically
from the current state of the Node Registry and the new block's seed.
We define an ordering function to compute a pseudorandom number
for each node, weighted by its participation score, then select up to a
maximum of X nodes with the lowest computed order numbers.

Where hash is the first 8 bytes of a SHA3-512 hash, PKN Is the public key
of node N, PS, is the pop score of node N, and BS,, is the first 8 bytes of
the block seed at height H, we give the ordering function as:

orderN = hash(hash(BSH) +)*(1/ PSN)

Once we have computed this list of winners, the total block reward
available according to the provided Coinbase Schedule function is
divided evenly between the winners, with the newly minted tokens
being credited to the winning node’s associated account.

It is worth noting that the Proof of Participation score has a fixed
maximum, which any good node should attain after some time.
Therefore in a large network of good nodes, rewards should be
frequent, fairly distributed, and not directly tied to recent block
production, given that the node keeps participating.

Eras Why does ZooBC blockchain use SHA-3 hashing
[&4 | algorithm instead of SHA-27

ZooBC 81

https://zoobc.org/index.php?topic=149.0

Z00BC WHITE PAPER V1.1

Spine Blocks

The ZooBC architecture creates once per day a special block called
a spine block that is also chained to the previous spine block. Those
blocks form a set of hops that allow a node to skip regular blocks
following the spine blocks from the Genesis block to the current
time. This provides a fast route to any moment in the history of the
blockchain. Spine blocks are created once per day on average, and
contain the major updates to the node registry (which nodes joined and
which left) and other metadata, but contain no transactions, resulting in
an extremely light set of blocks to download.

In this way, a node only needs to download a very light block for
each day of the life of the blockchain, having a constant up-to-date
list of who was in the node registry at each moment in the history of
Z00BC, and so can evaluate if the next spine block has been created
by a legitimate node. This allows, in the case of a fork, a new node
to choose the best spine block between several options presented.

ZooBC 82

N Spine Blocks Z00BC WHITE PAPER V1.1

The first step for any new node is to download, starting at the
genesis block, all the spine blocks (choosing, in case of a fork,
the set of blocks with the highest cumulative difficulty) until it
arrives at the latest available spine block. The node then uses
the most recent blockchain snapshot hash found in a spine block
(more on this below] to identify and download a blockchain snapshot
from peers on the network. This allows a new node to come up
to date with the live blockchain in a few minutes, even if ZooBC
has run for decades and the blockchain has a collective weight
of many gigabytes of data.

> | VIDEO

[=]" E| Spine Block [EEM[E] Whatls a Spine Block
Development (earlier called a Mega
Ol Ole5aK Block)?

[E]&5[E] Relation of Spine [m]*=k[m] How Does Spine Block
- Blocks and e ev, Make the Blockchain
[&] ¥ Snapshots [=] Download Time Faster

Z=h| Forum
E%‘FEE Join discussions Eﬁ Join discussions about

2 about Bloc ock Backups
b Block Eét' Block Backup
EEE res =

mg=im] Join discussions about
if;% Rollback
[=]

ZOOBC Q&A

[EE$iE] Cet your questions
: about Spine Blocks
E' answered

ZooBC 83

https://youtu.be/TeFeIqqoSRY
https://youtu.be/GlFX5ieFznY
https://youtu.be/EBgx0CfrLCk
https://youtu.be/UNlayWFMT0o
https://zoobc.org/index.php?topic=146.0
https://zoobc.org/index.php?board=53.0
https://zoobc.org/index.php?board=54.0
https://zoobc.how/?qa=tag/spineblock

Z00BC WHITE PAPER V1.1

Structure of a Spine Block

Unlike regular blocks on the blockchain, in which the block creator can
select which transactions and receipts will be included, the contents
of a spine block (all except for the set of digital signatures needed to
create and validate the spine block] is purely determined by the state of
the blockchain. Therefore any node in consensus will produce precisely
the same spine block that any other node would produce at the same
block height.

Hashes of the node’s database state * |

| Hash of the prev spine block |

Timestamp

| List of the node public keys |

* All the other days of the month no snapshot hash i1s included in the spine block.

A spine block first contains the hash of the previous spine block, and a
timestamp, just like a normal blockchain’s block. This is the essence
of any blockchain and guarantees that the older blocks have not been
tampered with.

Each spine block also contains a list of node public keys which have been
added to, or removed from, the node registry since the last spine block.
As the node applies spine blocks in sequence, the set of additions and
removals tracks a "key pool” which roughly follows the set of node public
keys in the node registry.

Each spine block must contain a collection of digital signatures on its
contents. The set of keys which may legally sign, and how much value
each of their signatures contributes to the cumulative difficulty of the
spine block, are governed by the consensus mechanism described below.

ZooBC 84

Z00BC WHITE PAPER V1.1

Finally, approximately once per month, based on the rules for when
database snapshots are taken (see below], it is ok for the spine block
creator to include the hashes of the node’s database state. All the other
days of the month no snapshot hash is included in the spine block. Details
on how this snapshot is created are presented in the section below on
Snapshots.

Signature Accumulation

Every node in consensus will generate the same spine block at the same
moment, so we need a mechanism to govern which node will broadcast
the spine block first, and how it will accumulate signatures from other
nodes in the key pool.

In the same way that potential next block creators are selected from
the node registry, after each spine block, a priority list of next signers is
calculated. To be valid, the new spine block must collect the signatures of
a large number of these nodes. The higher on the priority list the signers,
the greater the “cumulative difficulty” of the spine block. In this way only
an attacker which controls more than 90% of the nodes in the registry can
be lucky enough to create a set of spine blocks with a greater cumulative
difficulty (and therefore more authoritative) than the honest set of spine
blocks.

Nodes then undergo a process of gossiping signatures on the new spine
block to each other, until enough are collected to consider the spine block
confirmed, and assign it a cumulative difficulty score according to the
priority position of the signers in the randomized list. At this time, the
hash of the new spine block is finalized, and it is broadcast along with all
collected signatures to the rest of the network.

Just as with regular blocks, if there are two competing versions of the
spine block sets available, the node will always select the one which has
the higher cumulative difficulty score.

ZooBC 85

Z00BC WHITE PAPER V1.1

Joining the Network

When a new node connects to the ZooBC network, it will first reach out
to the well-known peers it is configured with. From these, it will continue
through a period of network discovery by querying peers from elsewhere
until it has a sizable collection.

The node will first query the hash and height of the last spine block from
this set of peers. If there are multiple candidate sets of spine blocks, it
will first select the set which reports the highest cumulative difficulty. The
node will then download all the spine blocks from its connected peers,
starting at the genesis block, confirming that the cumulative difficulty
claimed by the last spine block is legitimate.

After arriving at the latest spine block, the node looks backward to find
the latest registered snapshot hash. The node can then compute (as a
function of the snapshot hash and the current state of the node registry)
which nodes maintain this snapshot, and begin downloading it from them.

Once the snapshot is downloaded and hashed to confirm its legitimacy,
the node will import the contents into its current database state. This
brings the node up to date with the state of the blockchain at the block
height when the snapshot was created. From there, the node simply
downloads from the network the remaining blocks as usual to catch up to
the current state of the network.

In other blockchains the blocks that a node needs to download to validate
the current state of the blockchain are those with all the transactions
from the genesis (block 0] to the latest block height. In ZooBC, a node can
shortcut to the most recent archived state through the spine blocks, and
only download the full blocks of the time since the last snapshot (which at
maximum would be a month worth of blocks).

> | VIDEO

[=1%1;[=] What Nodes Can Validate
- Spine Blocks?

CIjkTx

ZooBC 86

https://youtu.be/5a6dPUGe5Zk

Z00BC WHITE PAPER V1.1

Snapshots

‘ 18.30 HD

L1/500 IS0 200 .T>|21|11|23 AWB F12 —)

One of our objectives is to reduce the blockchain download time to a
constant (or nearly so.] The blockchain download time is a notorious
problem, as traditionally each node must download and apply in
sequence the entire history of previous blocks and transactions
before it can begin evaluating the validity of new transactions, and
the size of this historical record necessarily continues to grow for the
lifetime of the chain.

To give an example: at the date of writing (18th of November 2019), the
Bitcoin blockchain, almost 11 years old (the genesis block is dated 9
January 2009), weighs 291GB, while the Ethereum blockchain, almost
4 and a half years old (the genesis block is dated 30 July 2015, weighs
almost double: 455GB (equivalent to downloading 350 high definition
movies). See https://bitinfocharts.com for more info on blockchains
data.

To address the blockchain bloat issue, in ZooBC, each node periodically (at
a block height agreed by the network] takes a snapshot of the current
state of its database, and computes a set of hashes for this snapshot.
To be sure the node has the same snapshot as all the other nodes,
it compares its new snapshot hashes against the hashes of the
snapshot as calculated with the hashes in the metadata of a new
spine block proposed by a blocksmith.

ZooBC 87

https://bitinfocharts.com

Z00BC WHITE PAPER V1.1

If the blocksmith uses hashes that, combined with known snapshot
hashes, lead to the same set of hashes the majority of nodes in
the node registry has calculated, its block is approved; otherwise
it is rejected. Any new node joining the network then only needs to
download the spine blocks until it finds the block with the hashes
of the latest database snapshot, and downloads it in chunks from
its peers, to come up to a recent database state, from which it can
finish downloading the most recent blocks to catch up to the rest of
the network.

The maximum size of a completely new snapshot can be determined by
the sum of all the assets and accounts with current balance and relative
properties. To produce a valid number in Mb we need to wait for the beta
version to be running and do stress tests to the blockchain.

VIDEO

[Ep=IE] How Snapshot
Works in ZooBC
=]}

What ZooBC Blocks Store
the Snapshots?

(=] 54 =]
Of

A

Snapshots

[m]z%[m] What ls Snapshot [E]¥i[E] Relation between Spine
i Time Interval? : ,j Blocks and Snapshots
=555 =] 3
=0 Forum

[®]%;[®] Joindiscussions

P-’ about Snapshot

[=] #5
ZOOBC Q&A

[w]&%=[m] Getyour questions
i - about Snapshot
[w]L* answered

ZooBC 88

https://youtu.be/gfgrRKtXryQ
https://youtu.be/-lXuqi5Ut_Y
https://youtu.be/gfgrRKtXryQ
https://youtu.be/EBgx0CfrLCk
https://zoobc.org/index.php?board=52.0
https://zoobc.how/?qa=tag/snapshots

Z00BC WHITE PAPER V1.1

Creating Snapshots

Approximately once per month, all nodes deterministically select a block
height at which the next database snapshot should be taken. Each node
will wait until enough blocks have elapsed that they have surpassed the
“maximum rollback height”, in order to guard against instances where
the node begins computing the snapshot and then must abandon the
process to process a rollback (see glossary in Appendix 3 at Page 116).

At this point the node initiates a background process to begin constructing
a file that represents the exact state of the node’s database from the
earlier block height determined to be the snapshot height. Once this
file Is constructed, it is saved as a snapshot, and its hashes are
computed.

In order to give nodes time to construct the snapshot file, a grace period
of many more blocks is given before it becomes legal to include the new
snapshot hash into a spine block. This ensures that once the new spine
block is broadcast, all nodes, even those running on very limited hardware
such as an Arduino or Raspberry Pi, should be able to construct and hash
their snapshot file, and thereby validate the hashes in the new spine block
against the one they independently computed.

ZooBC 89

Z00BC WHITE PAPER V1.1

Block Backups

State snapshots allow a node to zoom to the current state of major
intervals in the blockchain’'s history. However, in order to rebuild the
database state at any particular block height, a record must still be
kept of all previous blocks and transactions. Additionally, in some
cases the information in a transaction itself (not the resulting
database state] may be required by a user, such as a digitally signed
message.

In the same way that a node produces large snapshot files, it will also
periodically produce files which contain sets of blocks, transactions,
and receipts, from a particular range of block heights, that needs to be
archived. Another node that wishes to inspect or replay these blocks
after they have been archived and pruned from its own database may
request from other nodes to download the needed blocks backup file.

If we assume all nodes keep all block backups, this may seem like
an equivalent (or worse] strategy to having the node simply store
all historical blocks in the blockchain. But combined with a general
mechanism for sharding the storage of large files across nodes on
the network (described below], this allows for major space savings.

=] Forum

af=40]| Join discussions about
E‘ét— Block Backups
[=]

ZooBC

https://zoobc.org/index.php?board=53.0

Z00BC WHITE PAPER V1.1

File Distribution

»» @

It is important that the network remembers old state snapshots and
block backups in a decentralized way, both because new nodes need
to catch up to the network without a central point of truth, and because
a node operator may want to go backward in time and validate an old
transaction in the context in which it happened, or recover other states
which only existed at a particular time.

Every node keeps the full data of the two latest snapshots in order
to make them maximally available to new nodes joining the network.
However, after this time, it is overly redundant for them to be duplicated
across all nodes. Therefore we employ a strategy similar to the
Torrent protocol to fairly divide the work of storing old snapshots and
block backups.

Each file is subdivided into smaller chunks, and the responsibility for
which set of nodes in the registry should retain each chunk is computed
deterministically. As a network parameter we specify only the number
of redundant copies of each chunk that the network should maintain,
and the chunk assignment algorithm automatically updates this
responsibility when nodes enter or leave the registry.

ZooBC 91

Z00BC WHITE PAPER V1.1 File Distribution I

When a set of nodes is chosen to be the custodian of certain chunks of
the files, there is no need for those chunks to be transmitted, meaning
that other nodes can delete those chunks to free up space on their
hard drives. These files are generated locally the same way by each
node, and only need to be transmitted to another node upon request.
This saves most network traffic compared to the Torrent protocol (on
which ZooBC's decentralized storage is modeled), where a single peer
posts a file and other peers download chunks from it to keep redundancy
of the file in the network.

When a node wishes to retrieve a large file such as a snapshot from
the network, it will first query other nodes with the hash of that file
for a manifest of the hashes of the chunks which compose the file.
For each chunk hash, the node can compute which set of registered
nodes are currently responsible for storing that chunk, and can pick
one at random from which to download it. Once all the chunks have
been collected, they can be assembled and hashed together, and the
final hash can be verified against the requested file hash.

/Z00BC computes the number of redundant copies of any chunk as
the square root of the registry size. In this way, as the network grows,
more redundant copies of each chunk are maintained, but the number
of copies grows more slowly than the size of the network, therefore
the burden of each node on average continues to be reduced (adding
nodes to the network reduces the storage responsibility of any given
node.]

ZooBC 92

Z00BC WHITE PAPER V1.1

Archival Nodes

When users run ZooBC nodes, they can do so in the smallest devices,
as ZooBC node doesn’t have data bloating, doesn’t require high
computation to secure the blockchain, and thus can be run at low
costs. Yet, if a user decides to keep a full copy of all the data present
in the blockchain, they can set up the node in a stronger machine
with a large data storage system, and set his node as an archival
node. This means that its node will be one of those that guarantee
full access to each piece of data that has transited in ZooBC since
day 1. This can be done to run statistics on all the data, and to provide
to the P2P network access to all the past data, when the assigned
backup nodes are not available. Data can always be verified as good
by recalculating its hash and matching it with the one in possession
by the requestor.

Although we leave open the possibility, via spine blocks, for casual
nodes to accelerate to a recent database snapshot, never having
previously downloaded or validated the chain, some node operators
may wish to run a node which builds the entire chain history from
scratch and maintain all data as a source for other nodes to download
from.

ZooBC 93

Z00BC WHITE PAPER V1.1 Archival Nodes

To facilitate this we allow a node to be configured as an archival node.
In this configuration the node will download and verify the entire history
of the blockchain, and will retain all blocks, transactions, receipts and
other data as a download source for other nodes.

This is not only a service to all the other nodes in the network, but
may be a necessity for centralised services that need to run queries
on the full history of the database, such as block explorer websites, or
services to produce statistics or summaries of data in the blockchain.
Any data provided by an archival node can be verified against the code
Z00BC blockchain just by jJumping to the needed transaction using the
spine blocks as shortcut.

While ZooBC uses a distributed file storage strategy to enable any
node on the network to recover past data from its regular peers, there
is always the possibility of a catastrophic failure where all nodes maintaining
redundant copies of some chunk go offline simultaneously. A few
people maintaining archival nodes help mitigate the risk, as the
network can then recover the lost pieces. There are many reasons
for people to operate archival nodes without an explicit reward
mechanism, such as operating blockchain explorer applications or
other applications which need a complete historical index of the
data.

ZooBC 94

Z00BC WHITE PAPER V1.1

Constants

=

RECEIPT BATCH SIZE

STATE

o

RUNING

RECEIPT FILTERS

Y

@ TOTAL NUMBER OF NODES

—) COINBASE B

technology PARTICIPATION SCORE

MAX TRANSACTIONS PER BLOCK

ASSIGNED PEERS %

)
) TokENS @

Y

While we have described in general terms the behavior of new systems
and algorithms we have developed, many of the hard numbers and
constants which will be deployed in the full release of ZooBC have not
yet been determined. During our alpha and beta testing phases we will
continue to reason about the best values for these parameters. Some of
the major sets of constants are described below.

Tokens

The totalamount of tokens that will be ever produced
by ZooBC [token cap.] We will evaluate technical
considerations like fungibility and psychological
considerations to arrive at what we feel is the
best total token supply.

] e [m]

p https://blogchainzoo.com/glossary/z/zoo/

=

https://blogchainzoo.com/glossary/z/zoobit/

ZooBC 95

https://blogchainzoo.com/glossary/z/zoo/
https://blogchainzoo.com/glossary/z/zoobit/

Z00BC WHITE PAPER V1.1

Coinbase

The rate at which new tokens are created by
the network, the curve describing how this
number will change with time, and how long
it will take to generate and distribute them all.
We aim to reward early network participants
more than later ones to incentivize early
participation, while ensuring the rewards
will still be sufficient to incentivize node
operators for decades.

Participation Score

The score earned or lost by a node when publishing
receipts, finding blocks etc, and its default initial
score when entering the node registry. This will
influence how difficult it is for nodes to rise or fall in
score, which consequently influences how easy it is
to maximize your rewards or to be kicked from the
registry.

VIDEO

[=] 554 [=] Relation of

IF fonx Participation

=] 13 and Rewards

FORUM

OE%50] Join discussions
about Participation

EREL Score

Z00BC Q&A

answered answered

Get your questions [EwEm] Getyour questions
about Participation || ;‘%@ about Rewards
[8] 557

ZooBC 96

https://youtu.be/bVkMmkqRkPQ
https://zoobc.org/index.php?board=48.0
https://zoobc.how/?qa=search&q=participation+
https://zoobc.how/?qa=search&q=rewards

Z00BC WHITE PAPER V1.1

Total Number of Nodes

The number of nodes we aim to register in the genesis
block of the network, along with the maximum
registry size (if any) and the rules governing the
rate at which nodes are added from the queue.
We aim to allow new nodes to join as quickly as
we find to be secure with the proof of participation
algorithm.

The number of peers from the registry each
node is assigned during each network topology
period. Selection of this number will be based on
the number of simultaneous open connections we
can expect from any given node on the network,
and how many maximum hops we want a transmission
to take to be gossipped to all nodes in the network.
Particularly we balance minimizing the hops for a
piece of data to traverse the entire network with
minimizing the number of simultaneous open
connections we expect any given node to have.

Block Time
r The average time between blocks. We aim to reduce
I - this as much as we can without causing forking
problems, as this will make the blockchain more
— responsive.

ZooBC 97

Z00BC WHITE PAPER V1.1

> | VIDEO

EiHE
o

Block Timing
Algorithm

ZOOBC Q&A

Get your questions
about Block Time

answered

Max Transactions per Block

THTIT ‘

Receipt Filters

Closely related to block time, we aim to tune this
number as high as we can without creating network
problems, and without creating a centralizing
requirement of high-powered computers to run
nodes.

Receipt filtering involves several parameters,
including how tightly to restrict the data filter,
how to compute the expiry time from the network
size, the number of assigned peers etc. If these
filters are too restrictive, honest nodes will see
their participation score fall unfairly, but if they
are too wide, nodes will have room to skip participation
or form attacking groups without being punished.
Through testing we will refine each of these numbers
until the network operates smoothly and securely.

Block Time

ZooBC 98

https://youtu.be/9kmHrnA3oRk
https://zoobc.how/?qa=search&q=block+time+

Z00BC WHITE PAPER V1.1

Receipt Batch Size

The number of receipts which are used to generate
each Receipt Merkle Root. In tuning this parameter,
/ we aim to maximize the number of receipts which
can be proven by any given merkle root, while

é

minimizing the time between a receipt being collected
and being proven on the network.

State Pruning

Which pieces of data can safely be removed from
state snapshots, and how long to retain them, and
other old unused accounts, etc are removed, and
if so when. How to calculate the fee for a piece of
data to be posted so that it survives pruning for
a long time. We aim to minimize the size of the
state without losing any valuable information.

ZooBC 99

Z00BC WHITE PAPER V1.1

Attack Vectors

A decentralized technology is only as useful as its resistance to attacks
from malicious actors. We have developed several theories of attack
against the protocol we propose here, many of which have been
mentioned in the sections to which they apply.

In this section, in a later version of this paper, we will list and analyse
all possible attack vectors on ZooBC. Blockchain Zoo will hire white
hat hackers to attempt attacks, as well as offer bounties for users
demonstrating an attack on ZooBC. Additionally we will perform
attacks against our own test networks and collect the results.

As we continue to refine the protocol and gather data from our alpha
and beta testing phases, and collect feedback from the community,
we will create a detailed accounting of possible attack vectors, how we
have simulated them, and any measurements we have made
demonstrating the security of the protocol.

ZooBC 100

Z00BC WHITE PAPER V1.1

ZooBC Tools

Wallet
> | VIDEO
[w]RE:m] How to Use the [ExME] Wallet Features
! S ZooBC Wallet : H
[=] 5y [=] 255

[EEZEE] What Makes the ZooBC
% Wallet Unique?
[=

=h| ForuM

[]f=w[m] Join discussions)% =] Joindiscussions about
about 3rd Party Wallets developed
O e Clones and Wallets =] 5 by ZooBC

Z0OBC Q&A

[m] Getyour questions about

At the moment we have decided not to publish a
public testnet faucet. During the Alpha and Beta
releases of ZooBC, there will be chain resets
(the blockchain gets rebooted to accommodate
changes to the protocol] leaving users suddenly
with an empty wallet. To make it easier to trace
who already had received testnet tokens and who
got them before a chain reset, and to warn users
of testnet chain resets, we are giving testnet tokens
to the community support team.

ZooBC 101

https://youtu.be/WlHkygzC9Mw
https://zoobc.org/index.php?board=16.0
https://zoobc.org/index.php?board=57.0
http://Zoobc.how
https://youtu.be/hd_Ag3NoZ-Y
https://youtu.be/Yf9Oeobp61o

Z00BC WHITE PAPER V1.1

Request ZBC testnet tokens via:

Mobile Wallet

® Feedback function in the mobile or desktop wallet
@ Forum - Token thread
@® Telegram group

e)

) ZooBC Wallet EN~

—_——
Dashboard 1z80-10UsD v

Account 1

18,022 ZBC

(<]

Participate in ZooBC Mobile Wallet Testing

ZooBC team is implementing Android and i0S mobile
wallets structuring the code to make it easy for
integrations and custom implementation. The
mobile wallet includes a dApps section, where the
Ul for dApps can be loaded for seamless interaction
of the user with the app. The mobile wallet integrates
with hardware wallets allowing the user to secure

private keys outside the mobile phone.

T

Download the i0S and Android Alpha version
of ZooBC Mobile Wallet.

The Android version is available during the Alpha and Beta versions of
Z0ooBC. It is not available in the Play Store. The i0S Alpha version has
been released with TestFlight (an iPhone app to test applications before
they are put online in the App Store). At the moment of the release of the
Beta version of ZooBC, in the TestNet, both Android and i0OS versions will

be published in the relative app stores.

=]

A0

A

Send us your feedback with ideas, suggestions, or bug reports.

ZooBC 102

https://zoobc.org/index.php?topic=192.msg453
https://t.me/ZooBlockchain
https://ZooBC.app
https://zoobc.org/index.php?board=57.0

Z00BC WHITE PAPER V1.1

Web Wallet

ZooBC also has a default web wallet to allow users to access their core
account data and functionalities from the web. The web wallet allows
nodes owners to interact with all the functionalities needed to manage
and monitor blockchain nodes. Also the web wallet is being implemented
to load specific dApps Ul and to accept signatures made with hardware
wallets and government released IDs.

e

) ZooBC Wallet E E
. FhL Go to the ZooBC Desktop Wallet
. O
[-]
'_ s
> | VIDEO
[m]5ki[m] Node Registration [m]'$*im] How Cana User Register
e in the Web Wallet ||} the Node?
[=]:%: (=142

Participate in ZooBC Desktop Wallet Testing

The Alpha Version of the web wallet is online and connects to the Alpha
TestNet. Use either the mobile or the web wallet to generate your account
address. Request demo tokens [testnet ZBC] to try the wallet using the
feedback button. NOTE: many functionalities have not been implemented
yet in the wallet, some aren't yet in the node app. Several “coming soon”
functions show what will be available soon.

[m] &% =]
= XA

Send us your feedback with ideas, suggestions, or bug reports.

ZooBC 103

https://zoobc.org/index.php?board=57.0
https://zoobc.one/
https://youtu.be/hd_Ag3NoZ-Y?t=84
https://youtu.be/Yf9Oeobp61o?t=74

Z00BC WHITE PAPER V1.1

Key Management

Digital signatures, a core part of how a user interacts with a blockchain,
requires the management of seed phrases and private keys. If a user
loses or forgets its seed words or its private key, it loses access to its
blockchain account and nobody can provide help to recover the account.
Most web wallets offer the possibility to store an encrypted seed phrase
in a centralized server, that the user can download and decrypt to
restore his access to the account. Other web wallets offer multisig
accounts, where 2 out of 3 signatures are necessary to execute
transactions. The user holds two, and the web wallet holds one. This
offers security as the web wallet cannot execute transactions alone,
the user can, and the web wallet exists as a spare key in case the
user loses one of the two it has. ZooBC is working to offer innovative key
management to allow users to safely store their keys and restore access
to their accounts when needed.

@ VIDEO

[E%Ei[R] What s the ZooBC Key
Management Feature?

Block Explorer

)
=
oo0o0oo

—) L\

Blockchain Zoo is working on a Block Explorer system, made of a server
-side application and a web Ul interface, to offer visualization of
blockchain data from the basic ones such as blocks and transactions,
to data specific to Proof of Participation protocol. This tool can be
customized to highlight specific dApps state and be deployed by anyone
that needs to offer to their users a specific frontend to monitor pieces of
information specific to their application.

ZooBC 104

https://youtu.be/byjU68M5TYI?t=46

Z00OBC WHITE PAPER V1.1

¥ E

b i Explore the live blockchain here

[5]:

|%| FORUM
[miiEm] How to Install the [w]FEi[m] Joindiscussions
i 3 Explorer on a F_._ : about Explorer
O] Mac0S 'E 14

[W]®y[=] Join discussions

% - related to the

O explorer
Z00BC Q&A

[E%®.[E] Getyour questions
: ; about Explorer
OLE answered

Participate in ZooBC Explorer Testing

Like every blockchain, ZooBC also has a block explorer. It is a work in prog-
ress, but you can use the Alpha version of the block explorer to monitor
the transactions you send and receive, and in the overall the transactions
send in the blockchain. As ZooBC has a very unique way of working, due to
the use of Proof of Participation, the block explorer also shows details that
are specific to this protocol. If you have feedback or a question, if you have
ideas on what the block explorer should visualize, if you feel something
isn't working properly... send us your feedback!

EREE
b i Explore the live blockchain here

[=]:

ZooBC 105

https://zoobc.net/
https://zoobc.net/
https://zoobc.org/index.php?topic=59.0
https://zoobc.org/index.php?board=50.0
https://zoobc.org/index.php?board=61.0
https://zoobc.how/?qa=search&q=explorer

Z00BC WHITE PAPER V1.1

Conclusion

As described in the introduction, this first version of ZooBC technology
makes several extensions on earlier blockchain technology. We introduce
the Proof of Participation mechanism, the mechanics of the node registry,
state snapshots, and the spine blocks, a limited governance model for
transaction fees, escrowed and liquid transactions, and many other

innovations.

LIQUID TRANSACTIONS =
Y NODE REGISTRY VOO n
3 SPINE BLOCKS ©
: VNI *
< o
 White Paper !
= &

PROOF OF PARTICIPATION 0 _______________
ESCROWED TRANSACTIONS ® ® TRANSACTION FEES .

We have chosen our goals for this first release conservatively, especially
emphasizing wide decentralization over scalability on the base layer, as
we believe the censorship resistance and community ownership which
come with such decentralization is the entire purpose of the technology.
However this does not mean that we don't intend the technology to
scale, or be contained by any of the conventional limits of blockchain
technology.

ZooBC 106

Z00BC WHITE PAPER V1.1

Towards the Future...

ZooBC is not only a technology, but a research initiative. The knowledge
we accumulate in our implementation and experience operating the
network, and any funds we raise to achieve these goals, will be directed
towards advancing our passionate vision to create decentralized
technologies which will overcome the hurdles they face today in
achieving widespread mainstream adoption. The exact details of
this work still await our experience and design, but we can give a
glimpse of the path ahead.

The node registry, especially, will serve as the backbone of a decentralized
application (DApp] platform that Blockchain Zoo intends to develop in
the next release of ZooBC. As each node’s operator can choose which
DApps to run [based on the node specifications), subsets of registered
nodes will be able host the DApps they select, and thus be rewarded
for operating that particular DApp. In this way the operator of a node
in the registry not only stands to earn coinbase rewards from the
greater network, but also has the opportunity to earn greater rewards
by supporting projects or applications built on top of ZooBC.

The security and decentralization of each DApp depends on the number
of nodes running such DApp. This will require DApp creators to include
meaningful incentives in the logic of their decentralised applications, so
that as many node operators as possible choose to run the DApp. This
becomes a scalability solution in itself, a kind of “self-sharding”, where
only subsets of the full network manage data and consensus for individual
decentralised applications.

ZooBC 107

Z00BC WHITE PAPER V1.1 Towards the Future I

At the base layer, we will provide the tools for these DApps to accept
digital signatures in multiple formats, and to give user accounts control
over which transactions they agree to receive. We wish to facilitate a level
of government compatibility not only on the base layer, but also for DApps
built on the base layer, to create an ecosystem of applications which can
be used to manage contracts, titles, and other “things” which may be
demonstrated in a court of law.

In future versions, ZooBC will also adopt what has been developed in
the field of zero-knowledge proofs, offering users and DApp developers
the option to increase both the privacy and compressibility of user’s
transactions on the blockchain. This should be accomplished in such
a way that it is compatible with the support for DApps, giving both
users and DApp developers the option to use built-in zero-knowledge
tools to easily enhance transactions within their own applications.

This is only a glimpse of where we would ultimately like to go. Blockchain
Zoo looks forward to present, in future papers, detailed designs of these
and other mechanisms in the next versions of the ZooBC technology and,
with the support of the community, fully implemented technologies to the
community.

All of us who used FidoNet, Torrent, and then Bitcoin witnessed the first
sparks of a decentralized future, and many of us are now engaged in a
community effort to fan those sparks into a flame which is transforming
the entire information technology space. Blockchain Zoo, through
its continuing efforts on the ZooBC project, seeks to attract the right
minds, resources and experience, and organize them to push the cutting
edge of decentralization, allowing all users to interact directly with each
other and removing dependence on central intermediaries. This was the
vision of Satoshi Nakamoto, and we proudly endeavor to carry forward
the torch.

ZooBC 108

Z00BC WHITE PAPER V1.1

Learn more about ZooBC

N
1%

Y774

ZooBC Alpha Version has launched! We are getting feedback and working
on debugging the code while implementing the last functionalities
that must be released when the beta version is ready. We are also
working on updating this white paper (it is still missing several
descriptions of ZooBC functionalities, and in some parts it isn't very
clear for readers). Another difficult and long task we face, before
releasing the beta version, is preparing all the code documentation.
The goal is to prepare a "how-to” manual that will guide step by step
any developer into implementing their version of the core node software,
keeping it fully compatible with ZooBC protocol. To learn more visit
zoobc.technology.

ZooBC 109

https://zoobc.technology

Support ZooBC

Forum, Q/A, and Feedbacks

For its growth, adoption, and strength, ZooBC relies on its community.
Blockchain Zoo (the company behind ZooBC) puts a great effort to
support the ZooBC community. In Appendix 5, there are many links for
social media, discussion groups, etc. Here we want to highlight the 3 key
tools for the ZooBC community.

&:
Oy,

Please join our Blockchain Community

bt O

ZooBC Forum. The central place of the ZooBC community. Users, from
the geekiest supporters to the less tech-savvy, earn a participation score
and gain access as they use the forum. Here we manage bounties and
reward the community to help us promote ZooBC, help code it, etc.

o0
=

Read and join ZooBC forum

ZooBC Knowledge Base. Here anyone can ask questions about ZooBC
and, once a supporter becomes an expert, can answer questions posted
by other community members! Questions and answers gain a participation
score. Yes, also ZooBC Q/A system has a participation score :) The best
answers are selected, and we plan to give out monthly prizes to the top
supporters!

(155
(=] 44

Visit the ZooBC Q&A website

ZooBC 110

https://blogchainzoo.com/join-community
https://zoobc.org
https://zoobc.how

Z00BC WHITE PAPER V1.1

Bounties and rewards

At the moment of publishing this V1.1 of the whitepaper (April 2nd 2020
Blockchain Zoo has already invested, in ZooBC, the estimated amount
of USD 1,048,055 [you can see a live increase of the amount invested in
the introductory paragraph at https://ZooBC.com). We have a team of 55
people, fully devoted to the technical and the commercial sides of the
project. As we go live with the Alpha version we welcome your support
both in manpower and in financial donations that will be used for bounties
open to the community itself.

EE
ok

See the forum!

Blockchain Zoo - The ZooBC Team

"A decentralized system is one where multiple parties make their own independent decisions”

To support ZooBC you can donate at the addresses as specified in
ZooBC.com website

ZooBC 111

https://zoobc.org/index.php?topic=101.0
https://zoobc.com/

Z00BC WHITE PAPER V1.1

APPENDIX 1 - White Paper Older Versions

Version 1.0

Download the (clean) V1.0 of the white paper in PDF version here:

OO
E% https://zoobc.com/ZooBC%20Whitepaper%20V1.0.pdf
E.r' -

The above V1.0 of the white paper in PDF format has a blockchain proof of
existence record:

O 0] https://proofofexistence.com/detail/897842dea01bc7d128b
|i|h e2bee’1798020029edb6ef22101cd345b895fc80ec15cac
Version 0.2

Download the (clean) V0.2 of the white paper in PDF version here:

el https://zoobc.com/Z00BC%20Whitepaper%20Draft%20
[&ET -%20V0.2.pdf

The above V0.2 of the white paper in PDF format has a blockchain proof
of existence record:

https://proofofexistence.com/detail/8a3b56fd764998e982
Rl 81506334188da469b70cfoc83968d11df1f2214f307e3f

ZooBC 112

https://proofofexistence.com/detail/897842dea01bc7d128be2bee1798020029ed6ef22101cd345b895fc80ec15cac
https://zoobc.com/ZooBC%20Whitepaper%20V1.0.pdf
https://zoobc.com/ZooBC%20Whitepaper%20V1.0.pdf
https://zoobc.com/ZooBC%20Whitepaper%20Draft%20-%20V0.1.pdf
https://proofofexistence.com/detail/8a3b56fd764998e98281506334188da469b70cf9c83968d11df1f2214f307e3f

B APPENDIX 1 - White Paper Older Versions

Version 0.1

Download the (clean) V0.1 of the white paper in PDF version here:

DEr]C https://zoobc.com/Z00BC%20Whitepaper%20Draft%20
[T -%20V0.1.pdf

The above V0.1 of the white paper in PDF format has a blockchain proof of
existence record:

m https://proofofexistence.com/detail/6a0cd36328a36cd8ey
Ei 44435a5b92890ba9134962f40f9165a4c15f888fcad3e
; [4

Q f[\-
2 NS o e

ZooBC 113

https://zoobc.com/ZooBC%20Whitepaper%20Draft%20-%20V0.1.pdf
https://proofofexistence.com/detail/6a0cd36328a36cd8e744435a5b92890ba9134962f40f9165a4c15ff888fcad3e

Z00BC WHITE PAPER V1.1

APPENDIX 2 - Privacy Considerations

Moving into the future of Blockchain and decentralized systems, there
Is increasing concern over the entirely-public nature of the data on the
blockchain. While these concerns are not addressed in ZooBC V1, they
stand out clearly in our minds as important to address in the technology
as a whole, and so here we list the thoughts that are guiding us as we
begin designing V2 of the ZooBC blockchain technology.

Data Privacy

Z00oBC is implementing and will implement various aspects devoted
to data privacy using zero-knowledge proof (ZKP) as a cryptographic
method to allow a user (the prover] to prove to another user (the verifier]
that they have the possession of some information without revealing
the information to the verifier. This is important to keep the privacy of
data that is exposed to the network and allow the use of decentralized
applications when managing data that should not be revealed to the
public. As ZooBC offers also distributed storage of data [initially used
to store the blockchain and the chain snapshots, but later used also to
save large data payload of blockchain transactions, and in subsets of
nodes also decentralized apps datasets), the aspects of data privacy
are a key factor for the adoption of ZooBC blockchain platform in
industries that need to comply with regulatory requirements, and
yet need to adopt decentralized systems to ease the business processes
when working with suppliers and clients.

ZooBC 114

B APPENDIX 2 - Privacy Considerations

User Privacy

With the adoption of the GDPR (General Data Protection Regulation] in
the European Union, questions regarding blockchain’s compliance
with the act have arisen. Personal data is “any information relating to
an identified or identifiable natural person”. Because identities on a
blockchain are associated with an individual's public and private keys,
this may fall under the category of personal data. A key part of the
GDPR lies in a citizen's right to be forgotten, or data erasure. Due to the
blockchain’s nature of immutability, potential complications if an individual
who made transactions on the blockchain requests their data to be
deleted exist. ZooBC is also working to address this aspect of user privacy.

Anonymity

Z00BC aims to provide the needed tools for both systems and users
that need full anonymity and applications and users that need or require
defined identities for the users. Also, even for systems that need to
identify users, there may be a need for anonymous transactions, anonymous
voting, etc. ZooBC aims to use Zero-Knowledge-Proof transactions to
allow anonymous transactions, anonymous interaction with decentralized
apps, and most importantly, anonymous voting where a vote per registered
user is guaranteed by the system, yet what the user has voted remains
anonymous.

ZooBC 115

Z00BC WHITE PAPER V1.1

APPENDIX 3 - Glossary

This whitepaper uses some terms or expressions that require some
background knowledge of blockchain. Here is a glossary to clarify
some basic terms which may ease understanding of the whitepaper:

‘ Node (also referred to as “blockchain node”, “network server”,
“peer”): A node is a computer or server that is running the
Z00BC node software. More importantly, it is connected to
other nodes, running the same software, to create a network.

https://blogchainzoo.com/glossary/n/node

‘ Network (also referred to as “P2P”, “Peer to Peer”, “the blockchain”):
A peer-to-peer network that distributes computing tasks
among many, private computers (decentralized servers), instead
of using company computers (centralized servers).

0]
[=]¥::

https://blogchainzoo.com/glossary/p/peer-to-peer-p2p

‘ Transaction (also referred to as “payment”, “transfer’]: A
transaction is a set of instructions that a blockchain user
prepares and signs in a client application. The user then
broadcasts the transaction to the network. Nodes in the network
receive the transaction, execute it, and incorporate it with others

into a block.

(1%] o |
il 3 https://en.bitcoin.it/wiki/Transaction
(=]

ZooBC 116

https://blogchainzoo.com/glossary/n/node
https://blogchainzoo.com/glossary/p/peer-to-peer-p2p
https://en.bitcoin.it/wiki/Transaction

‘ Fee (also referred to as “transaction fee”]): The payment a user
grants to the network to include her transaction in the blockchain.
To submit a transaction a user needs to add a fee that is given
as an incentive to nodes to maintain the blockchain. The fee is
usually attached to the transaction itself; if the transaction is
rejected the fee is usually returned to the user. Fees also serve
as a deterrent to users from spamming or otherwise abusing
a blockchain. Quote: "Ah, if only spammers had to pay a fee to
send us emails...”

O[zA0]
=&

https://blogchainzoo.com/glossary/t/transaction-fee

‘ Mempool (also referred to as “queued transactions”,
“unconfirmed transactions”): Atemporary cache of transactions
stored by a node that will exist until each transaction is
incorporated into the blockchain. When users submit a transaction
to the P2P network, each node receives and validates the
transaction and, before rebroadcasting it to the rest of the
network, keeps a copy of it in a local queue called a “mempool”.
Once the transaction is included in a new “chained” block, the
node first executes the transaction, updating the status of its
copy of the blockchain, and then removes the transaction from
its mempool.

% [=l https://blog.kaiko.com/an-in-depth-guide-into-how
E| -the-mempool-works-c758b781c608

‘ Block: A block (the word “block” in “block-chain”) is a set of
data, usually formed by metadata and transactions, assembled
by a miner (see below) who ensures that it complies with the
consensus algorithm of the blockchain. After creating a block,
the miner signs it and broadcasts it to the network so that
nodes can validate it and add it to the blockchain.

ZooBC 117

https://blogchainzoo.com/glossary/t/transaction-fee
https://blog.kaiko.com/an-in-depth-guide-into-how-the-mempool-works-c758b781c608

https://en.wikipedia.org/wiki/Blockchain#Blocks

https://blogchainzoo.com/glossary/b/block

‘ Block Height (also referred to as “height”, “blockchain height”):
The position (height] of a block in the blockchain. A blockchain
Is composed of a sequence of unique blocks chained to one
another, with each block given a sequential incremental value
that determines its position in the blockchain. Each block is
assigned a 'height” starting from zero. The blockchain height
Is the total number of blocks on a blockchain.

Oll=i00) | |
% https://blogchainzoo.com/glossary/b/block-heigh
Ok

‘ Miners (also referred as “forgers”, “minters”, “block creators”,
“blocksmiths”): The accounts, in a blockchain, that, through
a node, create, sign, and propose new blocks to the network.
Usually miners collect the fees of the transactions included in
the blocks they create. In some blockchains they also collect
an additional reward made of new coins created with the block
(see “coinbase”). In Proof of Work an account can be owned by
an individual user, or by a group of users pooling their computing
resources (a ‘mining pool’] to increase their chances of earning
fees.

https://blogchainzoo.com/glossary/m/miner

ZooBC 118

https://en.wikipedia.org/wiki/Blockchain#Blocks
https://blogchainzoo.com/glossary/b/block
https://blogchainzoo.com/glossary/b/block-height
https://blogchainzoo.com/glossary/m/miner/

‘ Coinbase (also referred to as “reward”, “new coins”, “new tokens”):
The “sender” of a special transaction included in every new
block (on some blockchains) that creates new tokens from
nothing. These tokens are given as a reward to the miner that
creates the new block, thereby increasing the total amount of
tokens in circulation within the blockchain. Some blockchains
use the coinbase only at block 0 and have 100% of their tokens
already created when the blockchain is launched. ("Coinbase”
should not be confused with the cryptocurrency exchange from
San Francisco of the same name.)

i
i https://en.bitcoin.it/wiki/Coinbase
[=]

‘ Hashing Power (also referred to as “hashrate”, "h/s”, “work”):
The total computing power used to calculate hashes in a Proof
of Work blockchain. To make a new block valid to be broadcast
to the network, miners of blockchains that use Proof of Work
are required to find, through trial and error, a particular hash
specific to their new block. To do so miners purchase specialized
hardware that calculates millions of hashes per second. The
quantity of hashes miners can collectively produce is called
hashing power.

[=] %5 =
: https://en.bitcoinwiki.org/wiki/Hashrate
[=]2A
[=] %y =]
https://blogchainzoo.com/glossary/h/hash-rate '
=] =5A

ZooBC 119

https://en.bitcoin.it/wiki/Coinbase
https://en.bitcoinwiki.org/wiki/Hashrate
https://blogchainzoo.com/glossary/h/hash-rate

‘ Blockchain (also referred to as “chain”, “distributed system”):
A constantly growing list of data blocks, each containing users’
transactions. Blocks are “chained” one to the other using
cryptography. The “chaining” is done by adding to each new
block a unique fingerprint (a cryptographic hash) of the previous
block. How this unique fingerprint is generated is the core
aspect of the mechanics that secure a blockchain (Proof of
Work, Proof of Stake, or many other “Proof of...” that are used.)

1535 =
3 3 https://blogchainzoo.com/glossary/b/blockchain
; [4

‘ Public / Private; Permissionless / Permissioned: Different
types of blockchain. A blockchain can be deployed publicly
(openly accessible from the internet] or privately inside an
access-protected Virtual Private Network (VPNJ]. Blockchains
can also be permissionless (where a user does not need to be
“authorized” to submit transactions, run nodes, etc), or
permissioned (where an administrator must authorize a user
account before she can post transactions, etc.) When deploying a
new blockchain, or a clone of an existing blockchain, the choice
must be made to make the new blockchain public or private and
permissioned or permissionless.

Public
[l | | |
S [Nitps:/blogchainzoo.com/glossary/p/public-blockehain/
(=]
Private

ms
https://blogchainzoo.com/glossary/p/private-blockchain/ :

(=]
Permissioned
[=] 85 =] . o
: https://blogchainzoo.com/glossary/p/permissioned-ledger/
(=] 7%

ZooBC 120

https://blogchainzoo.com/glossary/b/blockchain
https://blogchainzoo.com/glossary/p/public-blockchain/
https://blogchainzoo.com/glossary/p/private-blockchain/
https://blogchainzoo.com/glossary/p/permissioned-ledger/

Permissionless

https://blogchainzoo.com/glossary/u/unpermissioned-ledger/

‘ Fork (also referred to as “blockchain split”, “alternative chain”):
A fork occurs, like a fork in the road, when different sets of
nodes in a blockchain disagree over which is a legitimate new
block and create alternative versions of the chain. Most often a
fork has a higher score and gets used by all nodes (see “Longest
Chain”, below.) A fork can be deliberate, or accidental. Between
the deliberate ones there are “soft” forks and “hard” forks. A
soft fork is a change in a blockchain protocol that is backward
-compatible. That means that non-updated nodes are still able
to process transactions and push new blocks to the blockchain,
so long as they don't break the new protocol rules. A hard fork
Is a change in a blockchain protocol which is incompatible with
the previous versions, meaning that nodes that don't update to
the new version won't be able to process transactions or push
new blocks to the blockchain.

E¥sE
iﬁu : https://en.wikipedia.org/wiki/Fork_(blockchain)
A

[=.
EtaE
https://blogchainzoo.com/glossary/f/fork o
[=] A

ZooBC 121

https://blogchainzoo.com/glossary/u/unpermissioned-ledger/
https://en.wikipedia.org/wiki/Fork_(blockchain)
https://blogchainzoo.com/glossary/f/fork

‘ Longest Chain (also referred to as “highest difficulty chain”,
“authoritative chain”): The chain of blocks that prevails in the
case of a fork (see “Fork”, above.] When miners “chain” a new
block to the previous one, the way the blocks are “chained” has
a value. The harder the work done in chaining a block (in PoW
blockchains), or the closest a block complies to the consensus
rules, the higher the score is for that piece of the chain. In the
event of a fork, when a node has more than one new block or
blockchain to choose from to update itself, the node calculates
the cumulative “score” generated when creating each chain,
and chooses the chain with the highest score (in Proof of Work
this “score” is referred as “difficulty”, and the chain with the
highest cumulative difficulty is the chosen one.] In this way,
nodes in a P2P network can reach the same decision without
communicating with each other, but simply using the same
algorithm to evaluate the options presented to them.

Clpel0)
o https://zdl-crypto.fandom.com/wiki/Longest_Chain
=] %A

‘ Proof of... (also referred to as “consensus algorithm/mechanism
/model’): A set of rules to reach a consensus in a blockchain
that allows nodes to “chain” blocks to one another by evaluating the
validity of transactions and the “score” of new proposed blocks.
In each blockchain nodes “prove” the validity of a transaction and
a block using the same method, but many different blockchains
can use different methods: the various consensus algorithms
that are named “proof of...” followed by a single word describing
the method (work, stake, capacity, etc)

https://blogchainzoo.com/glossary/c/consensus-algorithm

ZooBC 122

https://zdl-crypto.fandom.com/wiki/Longest_Chain
https://blogchainzoo.com/glossary/c/consensus-algorithm

‘ Receipt (specific to Proof of Participation in ZooBC): A node’s
acknowledgment of receiving data from another node, evidence
of the latter’s participation in the network. To measure its
participation in ZooBC, when exchanging information in the
Peer to Peer network, a node acknowledges having received
information from another node by sending back a digitally
signed receipt. Once a node has collected enough receipts, and
when it is its turn to create a block, it can include in the metadata
of the block a subset of the receipts it has collected. This can be
later used to prove, at consensus level, that the node has
participated in the network, thus earning a participation

“score”.

OE 410 | |
4 | https://blogchainzoo.com/glossary/r/receipt

OF ¥R

‘ Token (also referred to as “coin”, “crypto token”, “cryptocurrency”,
“digital assets”): A unit of value within a blockchain system, at
times used as an internal currency to pay for goods and services,
but essentially needed to pay the transaction fees. The financial
value of tokens is determined by their current market value
which in turn depends on the level of user’s trust in the blockchain.

https://blogchainzoo.com/glossary/t/token

‘ Stake (also referred to as “locked funds”, “total deposit”,
“locked balance”): A user’s funds that are locked or held as a
guarantee. Mostly referred to in “Proof of Stake” blockchain, the
stake Is the economic purpose to provably commit to a promise
that the user won't sell the staked tokens for a pre-established
period of time.

ZooBC 123

https://blogchainzoo.com/glossary/r/receipt
https://blogchainzoo.com/glossary/t/token

(=i =] https://medium.com/coinmonks/understanding-proof-
i of-stake-the-nothing-at-stake-theory-1f0d71bc027

‘ Address (also referred to as “account”, “wallet”): An address is
an alphanumeric string of letters and numbers that is unique to an
“account”. It is used to provide a digital identity (which can remain
anonymous] to identify a sender or a recipient of blockchain
transactions. For example to route digital assets across the
network to a particular recipient.

O 0]
(=]

https://blogchainzoo.com/glossary/a/address

‘ Address Type (also referred to as “account type”, “wallet type”):
Addresses are the result of a particular mathematical
algorithm. From a “private” key, which is secret to the user, a
“public” key is calculated and from there the address the user
can share with others. Government IDs and various blockchains
have their own address format. While different blockchains have
unique address formats, ZooBC supports many different types
of addresses in a single blockchain.

B E
=] 5

https://unblock.net/what-is-a-blockchain-address

‘ Digital Signature (also referred to as “signature”, “cryptographic
signature”): Digital signatures are a cryptographic tool to sign
messages and verify message signatures in order to provide
proof of authenticity for blockchain transactions.

[=] 7% =]
aEbd | hitps:/blogchainzoo.com/glossary/d/digital-signature
E:‘r\.' [4

ZooBC 124

https://medium.com/coinmonks/understanding-proof-of-stake-the-nothing-at-stake-theory-1f0d71bc027
https://blogchainzoo.com/glossary/a/address
https://unblock.net/what-is-a-blockchain-address
https://blogchainzoo.com/glossary/d/digital-signature

B APPENDIX 3 - Glossary

ZooBC 125

Z00BC WHITE PAPER V1.1

‘ Sybil attack: A Sybil attack is a kind of security threat on an

online system where one person tries to take over the network
by creating multiple accounts, nodes or computers. For example a
Sybil attack can take place when somebody runs multiple nodes
on a blockchain network. Attackers may be able to out-vote the
honest nodes on the network if they create enough fake identities
(or Sybil identities). They can then refuse to receive or transmit
blocks, effectively blocking other users from a network.

(5133 =]
[=1'3F 7

https://en.wikipedia.org/wiki/Sybil_attack

Fee Scale (also referred to as “fee multiplier”, “multiplier”): A
variable number to which set fees needs to be multiplied by, to
give an adjusted fee amount to be paid for transactions. Operators
of registered nodes on the network may take a regular vote on
the appropriate multiplier, which we call the fee scale, for
minimum transaction fees. This guarantees that while the
value of the blockchain token may fluctuate, the fees paid for
transactions remain stable against the regular currency.

https://blogchainzoo.com/glossary/f/fee-scale

Peer Filter (also referred to as “connection table”, “P2P topology”):
The ordering of all nodes in the registry used to assign a set of
preferred peers to each node. Each node computes its peer
filter and it connects to the assigned nodes. When a node
publishes receipts, the receipts it is allowed to publish must
come from one of its assigned peers at the time the receipt was
created.

Okz0
] 3 https://blogchainzoo.com/glossary/p/peer-filter
[=] 58

https://en.wikipedia.org/wiki/Sybil_attack
https://blogchainzoo.com/glossary/f/fee-scale
https://blogchainzoo.com/glossary/p/peer-filter

‘ Rollback (also referred to as “reorganization”, “reorg”):

The work a node does to replace the last blocks when it realizes to
be in a fork of the blockchain as it receives a new chain that's
longer (has higher cumulative difficulty) than its current active
chain. Reorganizations happen when a node realizes that what
it thought was the canonical chain turned out not to be. When
this happens, the blocks in the latter part of its chain (i.e. the
most recent transactions) are reverted and the transactions
in the newer replaced blocks are executed. All reorgs have a
“depth,” which is the number of blocks that were replaced,
and a “length,” which is the number of new blocks that did the
replacing.

3 | https://learnmeabitcoin.com/guide/chain-reorganisation

‘ Rollback Attack (also referred to as “51% attack”, “Majority attack”):
A rollback attack does not try to disrupt or interfere with the
consensus protocol. Rather it plays along with the protocol's
rules in order to attain the effect of changing the blockchain’s
content to the benefit of the attacker. If an attacker can create
an authoritative fork with blocks excluding transactions she
used to pay someone in the legit blockchain, will get all the
other nodes to rollback (see above] into his forged version of
the blockchain, where he never sent the payment, keeping its
tokens.

[=]
L https://learncryptography.com/cryptocurrency/51-attack
=]

‘ Merkle Tree (also referred to as "Hash Tree”): A Merkle tree is just
an efficient way to prove that something is in a set, without having to
store the set. Merkle trees are a fundamental part of blockchain
technology. A Merkle tree Is a structure that allows for efficient and
secure verification of content in a large body of data. This structure
helps verify the consistency and content of the data.

ZooBC 126

https://learnmeabitcoin.com/guide/chain-reorganisation
https://learncryptography.com/cryptocurrency/51-attack

[=] % [m]
] https://learncryptography.com/cryptocurrency/51-attack
=55

‘ Merkle Root (also referred to as “Merkle Proof”): The Merkle
root is the hash of all the hashes of a set of data. In a blockchain
block, all of the transaction hashes in the block are themselves
hashed (sometimes several times - the exact process is complex],
and the result is the Merkle root. The Merkle root, part of the
block header, is the hash of all the hashes of all the transactions

in the block.
DBAD)

& | https://blogchainzoo.com/glossary/m/merkle-root
E.ﬂ.‘ [

‘ Privacy (in Blockchain) (also referred to as “Zero-Knowledge
Encryption”): Zero-Knowledge encryption means that service
providers know nothing about the data stored on their servers.
Zero-knowledge means that no one besides the user has the
keys to her data, not even the service she is storing her files
with. Also known as private encryption, it is the ultimate way in
which a user can keep data private, though it does come with
a few downsides: most important of these is that if the user
loses the decryption key, the data is gone forever.

https://www.cloudwards.net/what-exactly-is-zero-
& knowledge-in-the-cloud-and-how-does-it-work

ZooBC 127

https://blogchainzoo.com/glossary/m/merkle-tree/
https://blogchainzoo.com/glossary/m/merkle-root/
https://www.cloudwards.net/what-exactly-is-zero-knowledge-in-the-cloud-and-how-does-it-work

‘ Zero-Knowledge Proof (also referred to as “Anonymous
transactions”): A zero-knowledge proof (ZKP} is a cryptographic
method which allows one person (the prover] to prove to
another person (the verifier) that they have possession of
some information without revealing the information to the verifier.
Zero-knowledge proof (ZKP) private transaction protocol helps
accelerate the adoption of secure, private transactions over
public blockchains.

3 https://www.altoros.com/blog/zero-knowledge-proof-
improving-privacy-for-a-blockchain

‘ Digital Twins (also referred to as “Chain to Off-chain bridge”):
“Digital twins” is the phrase used to describe a computerized
(or digital) version of a physical asset and/or process. The digital
twin contains one or more sensors that collect data to represent
real-time information about the physical asset.

[B134
3 https://en.wikipedia.org/wiki/Digital_twin
(=] e

‘ Nonce (also referred to as “Salt”): A nonce is an abbreviation
for “number only used once.” In cryptography, a nonce is an
arbitrary number that may only be used once. It is often a random
or pseudo-random number issued in an authentication protocol
to ensure that old communications cannot be reused in replay
attacks. They can also be useful as initialization vectors and in
the cryptographic hash function.

https://www.investopedia.com/terms/n/nonce.asp

[S]22h =1
3
[=]; T

ZooBC 128

https://www.altoros.com/blog/zero-knowledge-proof-improving-privacy-for-a-blockchain
https://en.wikipedia.org/wiki/Digital_twin
https://www.investopedia.com/terms/n/nonce.asp

Z00BC WHITE PAPER V1.1

APPENDIX 4 - Consensus Algorithms

The blockchain space is saturated with attempts to improve efficiency,
security and fairness in the way that nodes reach a consensus on
the history of events witnessed by the network. While the explosion
of strategies may seem overwhelming or unnecessary, each project
(some more than others] is doing its part in exploring the properties
and tradeoffs yielded by each approach, and the crypto community is
collectively narrowing down the proposed consensus strategies
darwinistically until only the strongest are left standing.

Here a brief overview of the major approaches to blockchain consensus,
and our reasoning to claim Blockchain Zoo's Proof of Participation as an
improvement over its predecessors.

Proof of Work Consensus

The Bitcoin whitepaper introduced the concept of using accumulated
“Proof of Work™ as a method for any node to agree on which blockchain,
among forks, should be trusted. This approach was very powerful
because it allowed nodes to independently and objectively agree on
one proposed history of events among many alternatives, in a way that
resists a “Sybil attack” (because votes are counted by CPU cycles, not
by accounts.) While many insist that Proof of Work is still the safest way
to secure a blockchain, time has shown some undesirable properties
of the algorithm.

ZooBC 129

First, the energy usage to secure such a system is always increasing,
as miners participate in an arms race to claim more of the newly
generated tokens. As of 2019, Bitcoin mining consumes as much energy
as the nation of Switzerland (population 8.5 million], and as the token
value appreciates the energy consumed is expected to rise. Some argue
the security of this approach is worth the cost, but we believe this is a
less-than-ideal property.

Second, this arms race has created a condition where an individual miner
with average hardware is unlikely to find a block for himself during
his natural lifespan. To fairly distribute the rewards for providing hash
power to the blockchain, people have resorted to “pooling” their hash
power together and proportionally dividing the block reward when any
of them find a block. At the time of writing, there are about 12 mining
pools with a non-negligible chance to successfully add blocks to the
Bitcoin history, with all others unlikely to ever meaningfully participate.
This level of centralization puts the “censorship resistance” property
of Bitcoin in jeopardy, as it is not difficult to imagine a condition where
a government or other organization may coerce 12 pool operators into
complying with its demands to censor some transactions. We believe
this failure to resist the tendency toward centralization is another less-than
-ideal property.

Third, Proof of Work mining does not require the consent of any participants
on the network for an outside party to become dominant. If someone
truly had the money and the will to buy a majority of the hash power
and use it to damage the chain, they could do so, even if all other long-time
network participants wished to prevent it. It is debatable whether this is
adesirable property or not, as it prevents the long-time stewards of the
chain from ensuring they can maintain control for themselves. We
believe it is fairer to give the vote to those who maintained and protected
the network rather than to whoever has the money to accumulate hash
power, and therefore we perceive this potential for externalized control
to be a less-than-ideal property.

ZooBC 130

B APPENDIX 4 - Consensus Algorithms

PoW-based blockchains leverage specialized computers, called miners,
which consume energy resources to perform accounting and security
services for the network.

PoW idea was originally published by Cynthia Dwork and Moni Naor in 1993.
The term “proof of work” was coined by Markus Jakobsson and Ari Juels in
a document published in 1999.

‘ Predetermined reward ‘ Transaction fees —‘ Miners —. Mining

(percentage of the coin)
(fé@ QO

I Pow MECHANISM
il O

The probability of mining A reward is given to Network miners compete with each

a block is determined by the first miner who solves other using their computational power.
how much computational the cryptographic puzzles The communities tend to become more
work is done by the miner. of each block. centralized over time.

4 Costly to maintain
N

Bitcoin Ethereum Dogecoin Litecoin Limits scalability @

Highest security

Longest proven track record

MBlockchain

ZooBC 131

Proof of Stake Consensus

The first and third concerns described above motivated some to develop
an alternate consensus algorithm to objectively choose between proposed
versions of the blockchain history called “Proof of Stake”. In this approach,
the likelihood of a network participant to add a block to the history is
computed according to how many tokens on the network she possesses,
and the block she creates is proven to originate from her via a digital
signature. In this way, which chain required "more work” to create is
simulated by a calculation of which nodes added blocks at which times
and their relative stakes. This design requires minimal energy and
guarantees that, in a fork, the nodes will choose the blockchain created by
the majority of highly-invested network participants -- in other words,
those who have a larger stake of tokens locked to create new blocks.
However, this strategy still has some undesirable properties.

First, the second concern described above regarding the centralization
of mining power applies equally to Proof of Stake. When a new Proof of
Stake blockchain launch, it has very often all the tokens that will ever
exist “pre-mined”. As a new blockchain is known by few, it is very likely
that, either at the launch of the blockchain or at a later time, a majority
of the tokens is in the hands of only a few participants that can distribute
them in many anonymous accounts. These few participants will create
almost all of the blockchain history, as well as claim any rewards such
as the transaction fees, meant to incentivize the entire network to run
nodes. If one party owns 51% of the stake, or parties who own as much
decide to conspire, they can effectively censor the transactions which are
accepted on the blockchain, or at a later time create an alternate history
which will be accepted by the rest of the nodes.

ZooBC 132

Second, even in the event that the block-creating power is well-distributed,
someone could come in possession of the private keys of accounts which,
even If they are now empty, at some point in time had a large stake.
Using those accounts an attacker can create an alternate blockchain
history that starts from the time those accounts had a large balance.
This alternative fork may be seen, by other nodes, as the most authoritative
chain, forcing them to switch to it. An attacker might purchase past private
keys for less than the potential gains of creating an alternate blockchain
history. Similarly, if someone discovered a vulnerability in the node software
which allows private keys to be copied from the servers, they could quietly
collect enough of the participants’ keys to take over the blockchain.
Importantly, as Proof of Work advocates note, creating an alternate chain
would require only trivial energy to be invested, and so this hijacking of a
Proof of Work blockchain could be performed quickly and cheaply once
the necessary keys were collected.

This second concern is exacerbated by the first: the more centralized the
blockchain is, the more vulnerable it is to outside manipulation. In fact, if
at any point in the blockchain’s history the majority of the block-creating
power was controlled by only a small number of private keys, anyone
who can get their hands on these few keys, even if those accounts now
are empty and abandoned, can effectively re-write the blockchain history
from that time forward and have it accepted by other honest nodes running
the network at the time of their choosing in the future.

ZooBC 133

PROOF OF STAKE

In PoS-based blockchains, nodes process and validate transactions by
proving that they have ownership of a certain amount of the asset, rather
than by performing energy-intensive computations.

PoS was probably first proposed at Bitcointalk.org by a member Quantum
Mechanic on 11 July 2011. PoS was first implemented in 2012 by Sunny King
and Scott Nadal in their PeerCoin blockchain.

B ovooss [rewaro

The rigrElo cre;te a block A validators’ chance of mining Anyone who holds the base

in between the selected a block is based on how much cryptocurrency can
validators is based upon of a stake of crypto they have. become a validator.

the value of their stakes.

Increased scalability on a base layer
Consumes less energy

Nothing-at-stake problem @ o @

‘ The rich getricher NXT Peercoin Stratis Pivx

MBlockchain

ZooBC 134

B APPENDIX 4 - Consensus Algorithms

Federated Consensus

The first concern above can be addressed by having a fixed number of
participants which each contributes to the blockchain history equally
(regardless of hash power or stake), thus ensuring that network rewards
and history-creating power cannot centralize to one entity. Further, the
second concern can be mitigated by ensuring that the number of these
participants (and therefore the number of keys which would need to
conspire to create a new longest chain) is large. Consensus algorithms
that embrace this theory of security are known as “Federated” consensus
and have been well-studied long before the emergence of blockchain
technology for use in other distributed systems. While we feel such
strategies effectively address the concerns above, in other ways they
are a step backward from Proof of Work and Proof of Stake.

First, federated networks are no longer “permissionless”: It is no longer
open for any person to simply join the network and begin participating
In the consensus process, regardless of their merit or investment in
the network. Usually some centralized process exists to govern which
participants are admitted into or ejected from the federation, and this
central process becomes precisely the weakness that must be avoided
in truly decentralized systems, as it gives disproportionate control of
the network to whoever manages the process. Some federated
consensus models allow users to vote on who can be admitted into the
federation, but this voting procedure may also be vulnerable to manipulation.

Second, this set of federated entities is usually well known [in fact
Federated consensus strategies gain their promise of security by
showing that the participants are separate well-trusted entities). This
makes It easy for an external adversary to identify who needs to be
pressured (technically, legally, financially or otherwise] to censor the
network. Additionally, by virtue of the fact that the participants are
already connected by at least one entity (the entity which approves their
membership in the Federation), it is not difficult to imagine them
conspiring off-chain to achieve some mutual goal.

For these reasons we feel a pure federation is not acceptable for secure
decentralized consensus, although it has some properties we would
like to preserve. Proof of Authority and Proof of Reputation (based on
Proof of Authority) are two examples of federated consensus algorithms.

ZooBC 135

Z0OBC WHITIEESREE APPENDIX 4 - Consensus Algorithms W

@ PROOF OF AUTHORITY

CONSENSUS ALGORITHM

Proof of Authority (PoA) is a reputation-based
the value of identity and rep of block validators.

algorithm that leverages

In March 2017, a group of Ethereum developers proposed PoA based on the Ethereum protocol.

The term was coined by Gavin Wood. It was developed primarily as a solution to the spam attacks
on the Ropsten Ethereum test network.

process ——] wooes

Il Rewaro

ﬂ LB RA A -~ = -~ -y
20 | —4
Q‘ ¢ o ﬁ :
@ Reputation at Stake @ Master of Ceremony @ Validators (Authorities) @ Token Rewards

POA MECHANISM

Al

PoA consensus is based on an extensible
group of independent validators. Each of
them is required to have a verifiable license
to be authorized as a validator by the

During the initiation ceremony, the MoC invites
this set of trusted entities to participate in the
network by sending an initial key known to the
network via a tamper-proof secure channel.

The validators start to create blocks and
generate a reward for the network security.
When a validator creates a block, it is rewarded
with a coin and all transaction fees. Each

Master of Ceremony (MoC).

validator has equal rights to create a block.

S E o tralizati Since the concept was born within Ethereum’s dev team,
Pt it s ofgoes ceceniraization most of its current implementations are based on the
Scalable Prone to censorship and blacklisting ~ Ethereum network
Inexpensive network

&

Kovan Testnet

Reputation doesn't systematically
~ prevent malicious behavior

V

VeChainThor

A

Microsoft Azure

MBlockchain

ORIGIN

Proof of Reputation (PoR) is a consensus mechanism where the reputation of a node is constructed
based on its asset, transaction activity. and consensus participation. New blocks are generated by
the leader node with the highest reputation, then validated and confirmed through
reputation-based voting.

REWARD

@ Leader Node

2 % %k & &
@ Reputation-based

POR MECHANISM

Verified transactions are recorded
in the system's distributed ledger
while increasing the reputation
value of the corresponding node.

The reputation score of each node
is determined by their social
activity, time and calculation.

. " t

Nodes yﬂthm the h|ghesg 5% :I;s:sy :rﬁ:: {ﬁ: ::nmdli):j:ﬂelﬁl
reputation value are put in to verify the new transactions
a candidate pool. in the network.

Faster transactions
Scalable

Only for private,
permissioned blockchains
Subject to 51% attack like
Proof of Work

D O @

GoChain MenloOne Bitconch

MBlockchain

ZooBC 136

B APPENDIX 4 - Consensus Algorithms

Delegated Proof of Stake Consensus

One of the most popular modern approaches to improving the scale of
a blockchain network is to use “Delegated Proof of Stake” Consensus,
where the accounts of the blockchain vote, with their stake, a small
number of nodes, running large enough hardware, to become block
creators and thus support a high transaction volume blockchain. While
this approach can dramatically increase the throughput of the network,
it does so at the expense of decentralization, having similar flaws as
conventional Proof of Stake and small Federations. As described above,
specifically, the ease of quickly collecting enough stake to control the
network, and the ability of a small number of block creators to conspire
to censor transactions.

While recognizing the importance of creating more scalable blockchain
technology, a pseudo-centralized approach is not the correct path.
Z00BC aims for the technical and financial requirements of operating
a node to not exceed those available to the average user, enabling a
blockchain that is directly operated by a large number of small,
independent actors. ZooBC offers a solution which both vastly increases
the number of keys which would need to be compromised to rewrite
the blockchain, and makes it significantly more difficult for such actors
to conspire or be coerced by an adversary seeking to censor the blockchain.

ZooBC 137

Z00BC WHITE PAPER V1.1

APPENDIX 4 - Consensus Algorithms

; DELEGATED PROOF OF STAKE

DPoS can be compared to representative democracy - participants vote on a trusted
representative, called a delegate, to secure the network on their behalf. Users can
theoretically replace “bad delegates” if they act against the majority consensus.

p DPoS was invented in 2013 by Dan Larimer, who was attempting to solve the issues that
7) plagued Bitcoin’s proof-of-work system. He originally developed DPoS to power a
“ cryptocurrency called BitShares. He later refined the consensus mechanism for his
second project, Steem, and is now continuing to improve it for EOS.

REWARD

WITNESS

The nodes with the most votes
are ranked, and the top N

of these will become members
of the elected witness panel.

People in the network allocate

their tokens as votes for witnesses

- the more tokens they have,
the higher their voting weight.

0 g ®

Nodes interested in becoming
a witness make positive
contributions to the network
and actively engage in the
community.

More centralization

Increased scalability
Better distribution of rewards
Real-time voting security

Witnesses cartels g‘}é S‘:: *‘ A

Easier to organize EOS BitShares Steem Ark

an attack
MBlockchain
— 700

ZooBC 138

B APPENDIX 4 - Consensus Algorithms

Byzantine Fault Tolerant Consensus

Another popular strategy for increasing the transaction throughput of a
decentralized network is an algorithm called “Practical Byzantine Fault
Tolerance”. This algorithm is especially used in Federated consensus,
where the participants are pre-selected, because it carries a particular
weakness in the face of Sybil attacks (when one attacker can operate
many nodes on the network] which would make it unsuitable for some
pBFT networks.

While the algorithm used can increase the speed of transaction processing,
pBFT consensus suffers from a particular property that cannot be tolerated:
an attacker controlling as few as 1/3 (one third) of the nodes can prevent the
entire network from reaching consensus. This may be a safe assumption to
make in a federated network with tightly requlated members, but in a public,
permissionless network, we feel this is too vulnerable to attack. For this
reason Z0oBC follows in the tradition of blockchains where an attacker must
reliably control more than 1/2 (half] of the network (and therefore properly
be the majority) in order to have a chance to control the network’s behavior.

(=g el

https://medium.com/codechain/why-n-3f-1-in-the-byzantine
-fault-tolerance-system-c3caébab8fe9

ZooBC 139

https://medium.com/codechain/why-n-3f-1-in-the-byzantine-fault-tolerance-system-c3ca6bab8fe9

Proof of Participation Consensus

Based on consideration of the various flaws and tradeoffs in the consensus
mechanisms explored above, ZooBC adopts a few elements of Proof of
Stake and of Federated consensus strategies, combined with a novel
algorithm developed by Blockchain Zoo to prove that a node is performing
useful work for the network. We call this “Proof of Participation” consensus.

Z00BC maintains a federation of nodes that we call the "Node Registry”.
Only nodes within the registry are permitted to create blocks, and their
probability to create the next block is more or less equal. This is similar
to Federated Consensus. However, any node operator can apply for a
spot in this registry, and their admittance into the registry is governed
entirely by the protocol rules, not by any centralized entity. The rate at
which new nodes are added to the registry is strictly limited by the protocol,
and the selection of which applicants will be added is governed by how
much stake they are willing to lock while they are in the registry. As
nodes queue to enter the node registry, priority is given to nodes with
a higher locked stake. This method uses a concept of Proof of Stake,
to the extent that staking tokens (a scarce resource on the network] is
used as a Sybil prevention mechanism, essential for a new blockchain.

NOTE: The strategy of requiring nodes to lock tokens to join the “Node
Registry” is applied only in the first version of ZooBC for the following
reasons:

@ To give a use to the token;
@ To create demand for tokens;

@ To reduce the tokens in circulation, thus creating
scarcity;

@ To limit the initial growth of the node registry;

@ To prevent Sybil attacks to the newly launched
blockchain

Future versions of ZooBC will shift from using “stake” for prioritizing
access to the node registry, to participation score. The algorithm will
prioritize nodes that, while in the queue, collect more participation score
compared to others. This will remove the use of "stake” from ZooBC,
making it a blockchain secured exclusively by participation.

ZooBC 140

Finally, when nodes in the "Node Registry” produce a block, they must
include in the block some proof that they have been contributing to the
network (by honestly propagating transactions and blocks.) Nodes that
miss their opportunity to create blocks, or which fail to include such
proofs in their blocks, will gradually lose “participation score” until they
are automatically removed from the registry. In this way, an operator must
maintain a node that is in regular communication with the rest of the
network to continue creating blocks and collecting coinbase rewards.

Coinbase rewards: as for Bitcoin, ZooBC has no “pre-mined” tokens. At
the beginning of the blockchain the total amount of tokens in existence
Is zero. At each block new tokens are created and distributed to the
nodes in the registry. When a new block is created, based on its block
seed, a pseudo-random selection of nodes will receive new tokens. The
new tokens created in the block are evenly distributed to the selected
winners, but a node’'s probability of being selected as a winner is
directly proportional to its participation score. In this way, nodes are
strongly incentivized to maximize their participation score, as this also
maximizes their profit on average. After enough time, all nodes which
are participating reliably should reach the maximum participation
score, making the distribution of new rewards between them essentially
equal.

This is an element of fairness in rewards that most other blockchain
technologies have not attempted to attain. For example, in Bitcoin,
so long as you produce the block with the most work, no one can say
whether you have been participating in other regular network activity.
It is largely taken on faith that node operators are propagating blocks
and transactions. In practice this leaves much of the hard work of
decentralizing the network to enthusiasts who run nodes because they
care, despite their not having enough hash power or stake to ever earn
rewards from the network.

ZooBC 141

This strategy resolves many of the flaws described in the previous
algorithms. By virtue of using digital signatures, ZooBC avoids Proof
of Work's energy consumption problem. By the use of an ever-growing
federation of nodes, ZooBC equalizes the probability of each node
operator to add to the history and claim coinbase rewards and avoid the
miner centralization problem of both Proof of Work and Proof of Stake.
By requiring each node to prove its participation (in the form of digitally
signed messages from other nodes) ZooBC dramatically increases the
number of private keys which would be needed to be compromised for
an attacker to forge a longer chain, mitigating the key-stealing weakness
of both Proof of Stake and Federated consensus. By allowing anyone to
freely apply for a spot in the node registry, ZooBC avoids the permissioned
(and therefore centralized) nature of a fully-Federated network.

In the long term, this Proof of Participation strategy results in a very
large pool of nodes taking turns to contribute to the network history,
and being equally rewarded for their service. Creating a longer chain
does not only require the keys of the majority stakeholders, but also of
a majority of registered nodes in the network. To attack a PoP chain,
an attacker needs to control far more than half of the nodes in the
registry. Coming to possess a large majority of the registry not only
requires a large investment, but also requires the time needed to have
many new nodes gradually admitted into the registry, and carries the
cost of running real nodes proving their service to the network for the
entire duration of the attack

ZooBC 142

PROOF OF PARTICIPATION

CONSENSUS ALGORITHM

The Proof of Participation consensus equally distributes decision power and
rewards amongst every node contributing to a blockchain’s operation. This
approach removes the link between decision power and resources, leads to
better decentralization and fair rewards distributions.

UI[E'B PoP was first introduced by Blockchain Zoo in 2019.

REWARD

09 9 990
S i

@Transaction fees
@ Newly generated coins

Anyone can apply to run a node for the network. Nodes are removed from the network if they
The applications are accepted automatically by do not prove that they are participating in the
the network protocol based on specific rules. consensus protocol.

Each block randomly selects several
recipients of newly created coins within the

Within the network, all nodes have an equal
chance to be randomly chosen to produce

the next block. Nodes that regularly fail to network.The chances for any node to win are
produce high-quality blocks are kicked out. based on its record of useful participation.

@ Energy efficient Participants must wait to be
Equal rewards to network accepted into the network before Z BC
| participants claiming rewards

High diversity of block @ Notscalable to extremely high .
creators contributes to the history transaction throughput .E B lo C kC h ain
——————————700

ZooBC 143

Z00BC WHITE PAPER V1.1

APPENDIX 5 - Websites, Groups and Social Media

You can contribute to the discussion, ask questions, and learn more about
Blockchain Zoo, ZooBC Blockchain and BlockCoWork by visiting our
websites, groups and social media channels.

Website

%F:E ‘ ZooBC website [=] =] ‘ ZooBCTechnology
i !?:-E E g
=] =]

ZooBC Community E@E ‘ ZooBC Questions E =]
Forum |t and Answers

[&] ofe

|-|
%EFEI @ zooBC Mobite App [EIERE @ zooBC Web Wallet
I= - -

i i

‘ ZooBC Block Explorer E =
[=]®

% ‘ Blockchain Zoo E [=] ‘ Blockchain Zoo
— website — & ZooBC Blog
[=15d74 IEI.%-&%
‘ BlockCoWork [H]; ﬁ ‘ Blockchain Zoo @r%
website % Store Ok
[=] 23 [=]%=:

ZooBC 144

https://zoobc.com
https://zoobc.technology/
https://zoobc.org
https://zoobc.how
https://zoobc.net
https://ZooBC.one
https://ZooBC.app
https://blogchainzoo.com
https://blockcowork.com/
https://blockchainzoo.com
https://blockchainzoo.store/

B APPENDIX 5 - Websites, Groups and Social Media

Join our community & groups

[=] ¥ [] ‘ Join our blockchain [=] ﬂ ‘ ZooBC Facebook

— Ly

community group
[=] [=] 5
@ zooBC Linkedin % @ zo00BcTelegram Bl
group I: | group

=] (=] 35
El' [=] ‘ Blockchain Zoo [E]z#is] ‘ Blockchain Zoo
- Facebook group [| Telegram group
E. - | E HoD

@ Follow us on social media

@ ZooBC

[=]5 | [=] ZooBC & =% =] ZooBC Facebook
L| Blockchain Zoo || i .j page
Ot Ofie

YouTube
@ Z0oBC Linkedin [EfE[E @ ZooBC Twitter EEE
[=] Dby

EEE ZooBC Instagram EEE ZooBC SubReddit
(=] Oy
ZooBC Telegram [w] i [m]
channel
[w]#

ZooBC 145

https://facebook.com/groups/ZooBC
https://blogchainzoo.com/join-community
https://www.linkedin.com/groups/10485998/
https://t.me/ZooBlockchain
https://t.me/bczoo
https://facebook.com/groups/blockchainzoo
https://fb.me/TheZooBC
http://youtube.com/c/BlockchainZoo
https://www.reddit.com/r/zoobc
https://www.instagram.com/TheZooBC
https://twitter.com/TheZooBC
https://linkedin.com/showcase/zoobc
https://t.me/ZooBCnews

Z00BC WHITE PAPER V1.1

Blockchain Zoo

APPENDIX 5 - Websites, Groups and Social Media

i MO

Blockchain Zoo
Facebook

Blockchain Zoo
LinkedIn

1% (in

Twitter

@

Blockchain Zoo

ofn
iila%‘

Blockchain Zoo
Instagram

E%EEI
E5k=4

e

Blockchain Zoo
Pinterest

g%@

Blockchain Zoo
Medium

Periscope

Blockchain Zoo

Blockchain Zoo [®]4: E
Twitch oty AL
[=]£:5:

Ok O] Blockchain Zoo =] [=] Blockchain Zoo
ey Steemit — & Telegram
[w] [= 4 channel
BlockCoWork
BlockCoWork BlockCoWork
Facebook — Twitter

e (O

= 4O

LinkedIn

(in)

BlockCoWork [=]¥:

BlockCoWork [w] 3.4 [=]
Instagram }%ﬁ
OER 0

ZooBC 146

https://t.me/BlockchainZoo
https://steemit.com/@blockchainzoo/feed
https://www.twitch.tv/blockchainzoo
https://www.pscp.tv/blockchainzoo
https://pinterest.com/blockchainzoo
https://medium.com/@BlockchainZoo
https://twitter.com/blockchainzoo
https://instagram.com/blockchainzoo
http://www.linkedin.com/showcase/blockcowork/
https://www.instagram.com/blockcowork/
https://www.facebook.com/blockcowork/
https://twitter.com/BlockCoWork
https://facebook.com/blockchainzoo
https://linkedin.com/company/blockchainzoo

B APPENDIX 6 - White Paper Index

ZooBC 147

APPENDIX 6 - White Paper Index

Abstract

Disclaimer

Introduction

Why Does Blockchain Technology Need
Another Consensus Algorithm?

ZooBC: a PoP Decentralized
Application Platform

Accounts

Account Addresses
Account Properties
Account Types
Digital Twins

Transactions

Transaction Types
Transaction Propagation
Transaction Application
Multisig Transactions
Transactions Attachments
Escrowed Transactions
Liquid Transactions
Transaction Fees

Blocks

Structure of a Block
The Block Seed

Block Creator Selection
Cumulative Difficulty

Z00BC WHITE PAPER V1.1

13

17

18

19
20
20
21

22

23
24
24

25
25
26
29
30

31

32
33
35
35

Multisig 36
Multisig Addresses 37
Multisig Info Object 37

The Multisig Transaction Type 38
Multisig Use Cases 40
Off-Chain Multisig 40
On-Chain Multisig 41
Anonymizing Multisig Addresses 42
Concealing Pending Transactions 42
Hierarchical Multisig 43

Fee Scaling [Governance) 44
Committing to Fee Votes 46
Revealing Fee Votes 47
Adjusting the Network Fee Scale 48
Note on General Governance 50
Node Registration o1
The Node Registry Life Cycle o4
The Node Registry 26
The Node's Public Key o7
Locked Balance o8
The Registration Queue 59
Registering a Node 60
Claiming a Node 61
Ejection from the Node Registry 61
Proof of Participation 62
Overview 64
The Receipt Object 67
Producing Receipts 68
Collecting Receipts 69
Batch Table Structure n

Receipt Table Structure n
Pruning Old Receipts 72
Proving Linked Receipts 72
The Height Filter 74
The Peer Filter 75
The Data Filter 77

ZooBC 148

B APPENDIX 6 - White Paper Index

ZooBC 149

Coinbase Distribution

Coinbase Schedule
Recipient Selection

Spine Blocks
Structure of a Spine Block
Signature Accumulation
Joining the Network
Snapshots
Creating Snapshots

Block Backups
File Distribution
Archival Nodes
Constants

Tokens

Coinbase

Participation Score
Total Number of Nodes
Assigned Peers

Block Time

Max Transactions per Block

Receipt Filters
Receipt Batch Size
State Pruning

Attack Vectors

ZooBC Tools
Wallet
Mobile Wallet
Web Wallet

Z00BC WHITE PAPER V1.1

78

79
81

82
84

85
86

87
89

90
91
93
95

95
96
96
97
97
97
98
98
99
99

100

101
101
102
103

Z00BC WHITE PAPER V1.1

Key Management

Block Explorer

Conclusion
Learn more about ZooBC
Support ZooBC

Forum, Q/A, and Feedbacks

Bounties and rewards

APPENDIX 1 - White Paper Older Versions
APPENDIX 2 - Privacy Considerations
APPENDIX 3 - Glossary

APPENDIX 4 - Consensus Algorithms

APPENDIX 5 - Websites, Groups
and Social Media

APPENDIX 6 - White Paper Index

104
104

106
109

110

110
11

112
114
116

129
144

147

APPENDIX 6 - White Paper Index Il

ZooBC 150

S

Z00BC White Paper

New Strategies in Blockchain

Developed by
-mBlockchain
Z00

B www.blockchainzoo.com

